The population has mean μ=29 and standard deviation σ=9.
This distribution is shown with the black dotted line.
We are asked for the mean and standard deviation of the
sampling distribution for a sample of size 34. The Central Limit
Theorem states that the sample mean of a sample of size n is
normally distributed with mean μx¯=μ and σx¯=σn√.
In our case, we have μ=29, σ=9, and n=34. So,
μx¯=29
and
σx¯=934‾‾‾√=1.5
This distribution is shown with the red solid line. Notice the
sampling distribution, which represents the sample mean of random
values of the population, has the same mean as the population
distribution. However, the sample mean will vary less than a random
value from the population, and therefore has a smaller standard
deviation.
Content attribution- Opens a dialog
Use the Central Limit Theorem for Means to find the sample
mean and the sample standard deviation
Question
What is the probability that the sample mean for a sample of
size 34 will be more than 32?
Use the results from above in your calculation and round your
answer to the nearest percent. You may use a calculator or the
portion of the z-table given below.
z0.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.60.000.65540.69150.72570.75800.78810.81590.84130.86430.88490.90320.91920.93320.94520.95540.96410.97130.97720.98210.98610.98930.99180.99380.99530.010.65910.69500.72910.76110.79100.81860.84380.86650.88690.90490.92070.93450.94630.95640.96490.97190.97780.98260.98640.98960.99200.99400.99550.020.66280.69850.73240.76420.79390.82120.84610.86860.88880.90660.92220.93570.94740.95730.96560.97260.97830.98300.98680.98980.99220.99410.99560.030.66640.70190.73570.76730.79670.82380.84850.87080.89070.90820.92360.93700.94840.95820.96640.97320.97880.98340.98710.99010.99250.99430.99570.040.67000.70540.73890.77040.79950.82640.85080.87290.89250.90990.92510.93820.94950.95910.96710.97380.97930.98380.98750.99040.99270.99450.99590.050.67360.70880.74220.77340.80230.82890.85310.87490.89440.91150.92650.93940.95050.95990.96780.97440.97980.98420.98780.99060.99290.99460.99600.060.67720.71230.74540.77640.80510.83150.85540.87700.89620.91310.92790.94060.95150.96080.96860.97500.98030.98460.98810.99090.99310.99480.99610.070.68080.71570.74860.77940.80780.83400.85770.87900.89800.91470.92920.94180.95250.96160.96930.97560.98080.98500.98840.99110.99320.99490.99620.080.68440.71900.75170.78230.81060.83650.85990.88100.89970.91620.93060.94290.95350.96250.96990.97610.98120.98540.98870.99130.99340.99510.99630.090