Question

Let X and Y be two normal random variables. Given that the mean of X is...

Let X and Y be two normal random variables. Given that the mean of X is 6 and its standard deviation is equal to 1, and the mean of Y is 2 with standard deviation 3. What is the probability that Z= X-3Y is positive?.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X...
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X + Y. The probability that Z is less than or equal to 3 is:
6. Let d= X -Y, where X and Y are random variables with normal distribution, and...
6. Let d= X -Y, where X and Y are random variables with normal distribution, and X and Y are independent random variables. Assume that you know both the mean and variance of   X and Y, if you have random samples from X and Y with equal sample size, what is the sampling distribution for the sample means of d(assuming X and Y are independent)?
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4. 1) What is the covariance between XY and X. 2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z. 3) Use the answer in part 2 to compute the E(Z).
Let U and V be two independent standard normal random variables, and let X = |U|...
Let U and V be two independent standard normal random variables, and let X = |U| and Y = |V|. Let R = Y/X and D = Y-X. (1) Find the joint density of (X,R) and that of (X,D). (2) Find the conditional density of X given R and of X given D. (3) Find the expectation of X given R and of X given D. (4) Find, in particular, the expectation of X given R = 1 and of...
The probability distribution of a couple of random variables (X, Y) is given by : X/Y...
The probability distribution of a couple of random variables (X, Y) is given by : X/Y 0 1 2 -1 a 2a a 0 0 a a 1 3a 0 a 1) Find "a" 2) Find the marginal distribution of X and Y 3) Are variables X and Y independent? 4) Calculate V(2X+3Y) and Cov(2X,5Y)
Let X be a normal random variable with ?=−10 and ?=2. Let Z be a standard...
Let X be a normal random variable with ?=−10 and ?=2. Let Z be a standard normal random variable. Draw density plots for both random variables on the same graph. You will want an x-axis that goes from around -20 to around 5. Your y-axis will start at zero and will need go high enough to cover the highest density. Recall that the density of a normal random variable at the point ? with mean ? and standard deviation ?...
Let X and Y be two random variables which follow standard normal distribution. Let J =...
Let X and Y be two random variables which follow standard normal distribution. Let J = X − Y . Find the distribution function of J. Also find E[J] and Var[J].
The independent random variables X and Y are defined by the following probability distribution tables: X...
The independent random variables X and Y are defined by the following probability distribution tables: X 1 3 6 f(x) 0.6 0.3 0.1 Y 2 3 5 7 f(y) 0.1 0.2 0.3 0.4Determine the standard deviation of 3Y + 5
. Let X and Y be two discrete random variables. The range of X is {0,...
. Let X and Y be two discrete random variables. The range of X is {0, 1, 2}, while the range of Y is {1, 2, 3}. Their joint probability mass function P(X,Y) is given in the table below: X\Y        1             2              3 0              0              .25          0 1              .25          0             .25 2              0             .25          0 Compute E[X], V[X], E[Y], V[Y], and Cov(X, Y).
Let X and Y be random variables and c a constant. Let Z = X +...
Let X and Y be random variables and c a constant. Let Z = X + cY. You are given the following information: E(X) = 5, Var(X) = 10, E(Y) = 3, Var(Y) = 1, Var(Z) = 37, and Cov(X,Y)=3. Find c if E(Z)≥0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT