Question

1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function...

1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function

2. Decide if f(x) = 1/81x3dx on the interval [0, 3] is a probability density function.

3. Find a value for k such that f(x) = kx on the interval [2, 3] is a probability density function.

4. Let f(x) = 1 /2 e -x/2 on the interval [0, ∞).

a. Show that f(x) is a probability density function

b. . Find P(0 ≤ X ≤ 1)

c. Find P(X ≥ 1)

5. Find the cumulative distribution function for the probability density function

f(x) = 3 /14x1/2 on the interval [1, 4]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
1. f is a probability density function for the random variable X defined on the given...
1. f is a probability density function for the random variable X defined on the given interval. Find the indicated probabilities. f(x) = 1/36(9 − x2);  [−3, 3] (a)    P(−1 ≤ X ≤ 1)(9 − x2);  [−3, 3] (b)    P(X ≤ 0) (c)    P(X > −1) (d)    P(X = 0) 2. Find the value of the constant k such that the function is a probability density function on the indicated interval. f(x) = kx2;  [0, 3] k=
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
f(x)=Cx 1. what value should C be for this to be a valid probability density function...
f(x)=Cx 1. what value should C be for this to be a valid probability density function on the interval [0,4]? 2. what is the Cumulative distribution function f(x) which gives P(X ≤ x) and use it to determine P(X ≤ 2). 3. what is the expected value of X? 4. figure out the value of E[6X+1] and Var(6X+1)
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0...
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0 < x < 2; 0, otherwise. a) What is the value of c? b) What is the cumulative distribution function of X? c) Find P(X<1|(1/2)<X<(3/2)).
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5...
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5 0 1 < x < infinity elsewhere 2. The probability density function of X is f(x). F(1.5)=___________ f(x) = {(1/2)x^3 - (3/8)x^2 0 0 < x < 2 elsewhere   3. F(x) is the distribution function of X. Find the probability density function of X. Give your answer as a piecewise function. F(x) = {3x^2 - 2x^3 0 0<x<1 elsewhere
STAT 190 Let X and Y have the joint probability density function (PDF), f X,Y (x,...
STAT 190 Let X and Y have the joint probability density function (PDF), f X,Y (x, y) = kx, 0 < x < 1, 0 < y < 1 - x^2, = 0, elsewhere, where k is a constant. 1) What is the value of k. 2)What is the marginal PDF of X. 3) What is the E(X^2 Y).
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT