Question

Suppose that X1,...,Xn ∼ U(0,θ); that is, a sample of N observations from a random variable...

Suppose that X1,...,Xn ∼ U(0,θ); that is, a sample of N observations from a random variable with a uniform distribution where the lower bound is 0 and the upper bound θ is unknown. Find the maximum likelihood estimate of θ, also demonstrating this in R. Draw the pdf and the likelihood, and explain what they represent, in R.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0,...
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0, θ). (a) Prove that T(X1, · · · , Xn) = X(n) is minimal sufficient for θ. (X(n) is the largest order statistic, i.e., X(n) = max{X1, · · · , Xn}.) (b) In addition, we assume θ ≥ 1. Find a minimal sufficient statistic for θ and justify your answer.
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn. (a) Give the pdf of Yn. (b) Find the mean of Yn. (c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c. (d) Find the variance of cYn,...
1. Let X1, X2, . . . , Xn be a random sample from a distribution...
1. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x, θ) = 1 3θ 4 x 3 e −x/θ , where 0 < x < ∞ and 0 < θ < ∞. Find the maximum likelihood estimator of ˆθ.
Let X1, X2 · · · , Xn be a random sample from the distribution with...
Let X1, X2 · · · , Xn be a random sample from the distribution with PDF, f(x) = (θ + 1)x^θ , 0 < x < 1, θ > −1. Find an estimator for θ using the maximum likelihood
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X2, ... , Xn denote a random sample from a discrete uniform distribution over the...
Let X2, ... , Xn denote a random sample from a discrete uniform distribution over the integers - θ, - θ + 1, ... , -1, 0, 1, ... ,  θ - 1,  θ, where  θ is a positive integer. What is the maximum likelihood estimator of  θ? A) min[X1, .. , Xn] B) max[X1, .. , Xn] C) -min[X1, .. , Xn​​​​​​​] D) (max[X1, .. , Xn​​​​​​​] - min[X1, .. , Xn​​​​​​​]) / 2 E) max[|X1| , ... , |Xn|]
Let X1,…, Xn be a sample of iid N(0, ?)random variables with Θ = ℝ. a)...
Let X1,…, Xn be a sample of iid N(0, ?)random variables with Θ = ℝ. a) Show that T = (1/?)∑ni=1 Xi2 is a pivotal quantity. b) Determine an exact (1 − ?) × 100% confidence interval for ? based on T. c) Determine an exact (1 − ?) × 100% upper-bound confidence interval for ? based on T.
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT