Question

Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn....

Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn.

Identify the distribution of the minimum V = min{X1,X2,...,Xn}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find...
If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find the distribution of Z = min{X1, X2}.
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find...
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find the conditional probability mass function P(X1 = k | X1 + X2 = n).
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
let X1 X2 ...Xn-1 Xn be independent exponentially distributed variables with mean beta a). find sampling...
let X1 X2 ...Xn-1 Xn be independent exponentially distributed variables with mean beta a). find sampling distribution of the first order statistic b). Is this an exponential distribution if yes why c). If n=5 and beta=2 then find P(Y1<=3.6) d). find the probability distribution of Y1=max(X1, X2, ..., Xn)
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find...
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find the distribution of Z = min{X1, X2}.
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit interval, (0, 1). Introduce two new random variables, M = max (X1, X2, . . . , Xn) and N = min (X1, X2, . . . , Xn). (A) Find the joint distribution of a pair (M, N). (B) Derive the CDF and density for M. (C) Derive the CDF and density for N. (D) Find moments of first and second order for...
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn...
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn by the following relation: Y=X12+X22+...+Xn2. Each of X variables is distributed via the normal distribution with following parameters: 1. Mean values of all Xi = 0 2. Variances are identical and are equal to ak2 Find probability density of a random value of Y.
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the...
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the median of X1, X2, X3 (that is the middle of the three values). Find the conditional CDF of X1, given the event Y = 1/2. Under this conditional distribution, is X1 continuous? Discrete?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT