Data collected on the depth of the Mississippi River and the water discharge are given in the table:
Depth | Discharge (ft3) |
---|---|
1.59 | 63 |
2.90 | 97 |
3.10 | 123 |
3.31 | 254 |
3.31 | 398 |
4.27 | 550 |
4.55 | 583 |
6.67 | 603 |
6.79 | 655 |
6.82 | 726 |
Find r2, and interpret the results.
0.81; The least-squares regression line, given by ŷ = −126.08 + 122.67x, is not a good fit for the data.
0.90; The least-squares regression line, given by ŷ = −126.08 + 122.67x, is a good fit for the data.
0.81; The least-squares regression line, given by ŷ = −126.08 + 122.67x, is a good fit to the data.
0.81; The least-squares regression line, given by ŷ = 122.67 − 126.08x, is a good fit to the data.
usig excel>data>data analysis>Regression
we have
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.90225 | |||||
R Square | 0.814055 | |||||
Adjusted R Square | 0.790812 | |||||
Standard Error | 115.2695 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 465359.2 | 465359.2 | 35.02352 | 0.000354 | |
Residual | 8 | 106296.4 | 13287.05 | |||
Total | 9 | 571655.6 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -126.081 | 96.89085 | -1.30127 | 0.229391 | -349.511 | 97.35 |
Depth | 122.6693 | 20.72793 | 5.918067 | 0.000354 | 74.8706 | 170.468 |
the value of R2 is 0.81 option c is true
0.81; The least-squares regression line, given by ŷ = −126.08 + 122.67x, is a good fit to the data.
Get Answers For Free
Most questions answered within 1 hours.