Question

Let A be an event, and let IA be the associated indicator random variable (IA is...

Let A be an event, and let IA be the associated indicator random variable (IA is 1 if A occurs, and zero if A does not occur). Similarly, let IB be the indicator of another event, B. Suppose that P(A)=p, P(B)=q, and P(A∩B)=r.

Find the variance of IA−IB, in terms of p, q, r.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if...
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if ω∈A, and IA(ω)=0 if ω∉A. Similarly, let IB be the indicator of another event, B. Suppose that, P(A)=p, P(B)=q, and P(A∪B)=r. Find E[(IA−IB)2] in terms of p,q,r? 2.Determine Var(IA−IB) in terms of p,q,r?
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if...
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if ω∈A, and IA(ω)=0 if ω∉A. Similarly, let IB be the indicator of another event, B. Suppose that, P(A)=p, P(B)=q, and P(A intersection B)=r. Find E[(IA−IB)2] in terms of p,q,r? 2.Determine Var(IA−IB) in terms of p,q,r? The solution in Chegg is for P(AUB)=r instead of P(A intersection B)=r. I need to know how to find Var(IA−IB) in terms of p,q,r?
1. Suppose A and B are independent events with probabilities P(A) = 1/2 and P(B) =...
1. Suppose A and B are independent events with probabilities P(A) = 1/2 and P(B) = 1/3. Define random variables X and Y by X =Ia+Ib, Y=Ia-Ib, where Ia, Ib are indicator functions (a) What is the joint distribution of X and Y? (b) What is P(X less than 2, Y greater than or equal to zero), (c) Are X and Y independent, Justify
Let Θ be a Bernoulli random variable that indicates which one of two hypotheses is true,...
Let Θ be a Bernoulli random variable that indicates which one of two hypotheses is true, and let P(Θ=1)=p. Under the hypothesis Θ=0, the random variable X has a normal distribution with mean 0, and variance 1. Under the alternative hypothesis Θ=1, X has a normal distribution with mean 2 and variance 1. Suppose for this part of the problem that p=2/3. The MAP rule can choose in favor of the hypothesis Θ=1 if and only if x≥c1. Find the...
Let ? and ? be independent random variables. Random variable ? has mean ?? and variance...
Let ? and ? be independent random variables. Random variable ? has mean ?? and variance ?^2?, and random variable ? has mean ?? and variance ?^2? a) Prove that ?[?⋅?]=??⋅?? Guidance: Start with ?[?⋅?]=ΣΣ??⋅???(?,?)??, and then use the definition of independent random variables. b) Use a) to prove that ???(??+??)=?^2???(?)+?^2???(?). Guidance: Use the formula proved in the class ???(?)=?[?^2]−?^2[?]. c) Let ? =5?+3?. Find the mean and variance of ? in terms of the means and variances of ?...
Let X be a random variable with a mean of 9 and a variance of 16....
Let X be a random variable with a mean of 9 and a variance of 16. Let Y be a random variable with a mean of 10 and a variance of 25. Suppose the population correlation coefficient between random variables X and Y is -0.4. a) Find the mean of the random variable W = 3X - 5Y. b) Find the standard deviation of the random variable Z = X + Y
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and...
Let random variable X ∼ U(0, 1). Let Y = a + bX, where a and b are constants. (a) Find the distribution of Y . (b) Find the mean and variance of Y . (c) Find a and b so that Y ∼ U(−1, 1). (d) Explain how to find a function (transformation), r(), so that W = r(X) has an exponential distribution with pdf f(w) = e^ −w, w > 0.
3. (10pts) Let Y be a continuous random variable having a gamma probability distribution with expected...
3. (10pts) Let Y be a continuous random variable having a gamma probability distribution with expected value 3/2 and variance 3/4. If you run an experiment that generates one-hundred values of Y , how many of these values would you expect to find in the interval [1, 5/2]? 4. (10pts) Let Y be a continuous random variable with density function f(y) = 1 2 e −|y| , −∞ < y < ∞ 0, elsewhere (a) Find the moment-generating function of...
Let X be a random variable with an exponential distribution and suppose P(X > 1.5) =...
Let X be a random variable with an exponential distribution and suppose P(X > 1.5) = .0123 What is the value of λ? What are the expected value and variance? What is P(X < 1)?
Let X be a random variable of the mixed type having the distribution function F (...
Let X be a random variable of the mixed type having the distribution function F ( x ) = 0 w h e r e x < 0 F ( x ) = x 2 4 w h e r e 0 ≤ x < 1 F ( x ) = x + 1 4 w h e r e 1 ≤ x < 2 Question 1: Find the mean of X Question 2: Find the variance of X Question...