Question

Let P be a probability distribution on sample space Ω and A ⊂ Ω an event...

Let P be a probability distribution on sample space Ω and A ⊂ Ω an event such that P(A) > 0. Show that the conditional probability given A is a proper probability distribution on Ω using the axioms of probability and definition of conditional probability.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (Ω, F , P) be a probability space. Suppose that Ω is the collection of...
Let (Ω, F , P) be a probability space. Suppose that Ω is the collection of all possible outcomes of a single iteration of a certain experiment. Also suppose that, for each C ∈ F, the probability that the outcome of this experiment is contained in C is P(C). Consider events A, B ∈ F with P(A) + P(B) > 0. Suppose that the experiment is iterated indefinitely, with each iteration identical and independent of all the other iterations, until...
Consider a probability space where the sample space is Ω = { A,B,C,D,E,F } and the...
Consider a probability space where the sample space is Ω = { A,B,C,D,E,F } and the event space is 2 Ω . Assume that we only know that the probability measure P {·} satisfies P ( { A,B,C } ) = 1/2 P ( { C,D,E,F } ) = 1/2 . a) If possible, determine P ( { C } ), or show that such a probability cannot be determined unequivocally. b) If possible, determine P ( { A,B }...
Consider a probability space where the sample space is Ω = { A,B,C,D,E,F } and the...
Consider a probability space where the sample space is Ω = { A,B,C,D,E,F } and the event space is 2 Ω . Assume that we only know that the probability measure P {·} satisfies P ( { A,B,C,D } ) = 4/5 P ( { C,D,E,F } ) = 4/5 . a) If possible, determine P ( { D } ), or show that such a probability cannot be determined unequivocally. b) If possible, determine P ( {D,E,F } ),...
Let S be a sample space with probability P and let A ⊂ S, B ⊂...
Let S be a sample space with probability P and let A ⊂ S, B ⊂ S be independent events. Given P (B) = 0.3 and P (A ∪ B) = 0.65, find P (A).
If S is the sample space of a random experiment and E is any event, the...
If S is the sample space of a random experiment and E is any event, the axioms of probability are: A.) P(S) = 1 B.) 0 ≤ P(E) C.) For any two events with E1, E2 with E1 and E2 = 0, P(E1 or E2) = P(E1)+P(E2) D.) All of the choices are correct E.) None of the choices is correct
Let A1, . . . , An be a partition of the sample space Ω. Let...
Let A1, . . . , An be a partition of the sample space Ω. Let X be a random variable. What is the formula for E(X) in terms of the conditional expected values E(X|A1), . . . , E(X|An)? (b) Two coins are tossed. Then cards are drawn from a standard deck, with replacement, until the number of “face” cards drawn (a “face” card is a jack, queen, or king) equals the number of heads tossed. Let X =...
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if...
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if ω∈A, and IA(ω)=0 if ω∉A. Similarly, let IB be the indicator of another event, B. Suppose that, P(A)=p, P(B)=q, and P(A∪B)=r. Find E[(IA−IB)2] in terms of p,q,r? 2.Determine Var(IA−IB) in terms of p,q,r?
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if...
Let A be an event, and let IA be the associated indicator random variable: IA(ω)=1 if ω∈A, and IA(ω)=0 if ω∉A. Similarly, let IB be the indicator of another event, B. Suppose that, P(A)=p, P(B)=q, and P(A intersection B)=r. Find E[(IA−IB)2] in terms of p,q,r? 2.Determine Var(IA−IB) in terms of p,q,r? The solution in Chegg is for P(AUB)=r instead of P(A intersection B)=r. I need to know how to find Var(IA−IB) in terms of p,q,r?
Suppose S is a sample space and f (E) = n(E) for each event E of...
Suppose S is a sample space and f (E) = n(E) for each event E of S. Prove that f is a probability n(S) function by verifying that it obeys the three axioms.
Let A, B and C are defined as an event in a certain sample space. The...
Let A, B and C are defined as an event in a certain sample space. The following information are known: * A and C are independent events. * A and B are mutually exclusive events. * ?(? ∪ ?) = 0.99, ?(? ∪ ?) = 0.999, ?(?) = 0. 48 Find ?(?) and ?(?).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT