Question

1. Let X be a random variable with PDF f(x) = C*absolute value(x), -1 <= x...

1. Let X be a random variable with PDF f(x) = C*absolute value(x), -1 <= x <= 1

A. Find the constant and plot the PDFof X. Identify P(X > 0.5) in the plot.

B. Determine and plot the CDF of X. Identify P(X > 0.5) in the plot.

C. Compute E(X^2 + X + 1).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b)...
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b) Find the mean of X. c) Find the variance of X. d) Find F (1.4). e) Find P(12<X<1). f) Find PX>3.
Let X be a continuous random variable rv distributed via the pdf f(x) =4e^(-4x) on the...
Let X be a continuous random variable rv distributed via the pdf f(x) =4e^(-4x) on the interval [0, infinity]. a) compute the cdf of X b) compute E(X) c) compute E(-2X) d) compute E(X^2)
Let the random variable X have pdf f(x) = x^2/18; -3 < x < 3 and...
Let the random variable X have pdf f(x) = x^2/18; -3 < x < 3 and zero otherwise. a) Find the pdf of Y= X^2 b) Find the CDF of Y= X^2 c) Find P(Y<1.9)
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x <...
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x < −1, c(2−x), 1<x<2, 0, elsewhere (a) Find the value of c such that fX(x) is indeed a PDF. (b) Determine the CDF of X and sketch its graph. (c) Find P(X < 1.5). (d) Find m = π0.5 of X. Is it unique?
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x <...
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x < 1), where C > 0 and 1(·) is the indicator function. (a) Find the value of the constant C such that fX is a valid pdf. (b) Find P(1/2 ≤ X < 1). (c) Find P(X ≤ 1/2). (d) Find P(X = 1/2). (e) Find P(1 ≤ X ≤ 2). (f) Find EX.
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
2. Let X be a continuous random variable with pdf given by f(x) = k 6x...
2. Let X be a continuous random variable with pdf given by f(x) = k 6x − x 2 − 8 2 ≤ x ≤ 4; 0 otherwise. (a) Find k. (b) Find P(2.4 < X < 3.1). (c) Determine the cumulative distribution function. (d) Find the expected value of X. (e) Find the variance of X
Let ? be a random variable with a PDF ?(?)= 1/(x+1) for ? ∈ (0, ?...
Let ? be a random variable with a PDF ?(?)= 1/(x+1) for ? ∈ (0, ? − 1). Answer the following questions (a) Find the CDF (b) Show that a random variable ? = ln(? + 1) has uniform ?(0,1) distribution. Hint: calculate the CDF of ?