Question

1. Let X be a random variable with PDF f(x) = C*absolute value(x), -1 <= x <= 1

A. Find the constant and plot the PDFof X. Identify P(X > 0.5) in the plot.

B. Determine and plot the CDF of X. Identify P(X > 0.5) in the plot.

C. Compute E(X^2 + X + 1).

Answer #1

3. Let X be a continuous random variable with PDF
fX(x) = c / x^1/2, 0 < x < 1.
(a) Find the value of c such that fX(x) is indeed a PDF. Is this
PDF bounded?
(b) Determine and sketch the graph of the CDF of X.
(c) Compute each of the following:
(i) P(X > 0.5).
(ii) P(X = 0).
(ii) The median of X.
(ii) The mean of X.

Let X be a continuous random variable with probability density
function (pdf) ?(?) = ??^3, 0 < ? < 2.
(a) Find the constant c.
(b) Find the cumulative distribution function (CDF) of X.
(c) Find P(X < 0.5), and P(X > 1.0).
(d) Find E(X), Var(X) and E(X5 ).

Let X be a random variable with pdf f(x)=12,
0<x<2.
a) Find the cdf F(x).
b) Find the mean of X.
c) Find the variance of X.
d) Find F (1.4).
e) Find P(12<X<1).
f) Find PX>3.

Let
the random variable X have pdf
f(x) = x^2/18; -3 < x < 3 and zero otherwise.
a) Find the pdf of Y= X^2
b) Find the CDF of Y= X^2
c) Find P(Y<1.9)

Let
X be a continuous random variable rv distributed via the pdf f(x)
=4e^(-4x) on the interval [0, infinity].
a) compute the cdf of X
b) compute E(X)
c) compute E(-2X)
d) compute E(X^2)

5. Let X be a continuous random variable with PDF
fX(x)= c(2+x), −2 < x < −1,
c(2−x), 1<x<2,
0, elsewhere
(a) Find the value of c such that fX(x) is indeed a PDF.
(b) Determine the CDF of X and sketch its graph.
(c) Find P(X < 1.5).
(d) Find m = π0.5 of X. Is it unique?

Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0
< x < 1), where C > 0 and 1(·) is the indicator
function.
(a) Find the value of the constant C such that fX is a valid
pdf.
(b) Find P(1/2 ≤ X < 1).
(c) Find P(X ≤ 1/2).
(d) Find P(X = 1/2).
(e) Find P(1 ≤ X ≤ 2).
(f) Find EX.

1. Let (X,Y ) be a pair of random variables with joint pdf given
by f(x,y) = 1(0 < x < 1,0 < y < 1).
(a) Find P(X + Y ≤ 1).
(b) Find P(|X −Y|≤ 1/2).
(c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R.
(d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY
of Y .
(f) Find the conditional pdf f(x|y) of X|Y = y for 0...

2. Let X be a continuous random variable with pdf given by f(x)
= k 6x − x 2 − 8 2 ≤ x ≤ 4; 0 otherwise.
(a) Find k.
(b) Find P(2.4 < X < 3.1).
(c) Determine the cumulative distribution function.
(d) Find the expected value of X.
(e) Find the variance of X

Let ? be a random variable with a PDF
?(?)= 1/(x+1) for ? ∈ (0, ? − 1). Answer the following
questions
(a) Find the CDF
(b) Show that a random variable ? = ln(? + 1) has uniform ?(0,1)
distribution. Hint: calculate the CDF of ?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 6 minutes ago

asked 44 minutes ago

asked 45 minutes ago

asked 48 minutes ago

asked 53 minutes ago

asked 53 minutes ago

asked 53 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago