A balanced coin is tossed 3 times, and among the 3 coin tosses, X heads show. Then the same balanced coin is tossed X additional times, and among these X coin tosses, Y heads show.
a. Find the distribution for Y .
b. Find the expected value of Y .
c. Find the variance of Y .
d. Find the standard deviation of Y
a)
below is pmf of Y:
P(Y=0)=P(X=0)*P(Y=0|X=0)+P(X=1)*P(Y=0|X=1)+P(X=2)*P(Y=0|X=2)+P(X=3)*P(Y=0|X=3)
=(3C0)*(1/2)0(1/2)3*(0C0)*(1/2)0*(1/2)0+(3C1)*(1/2)1(1/2)2*(1C0)*(1/2)0*(1/2)1+(3C2)*(1/2)2(1/2)1*(2C0)*(1/2)0*(1/2)2+(3C0)*(1/2)0(1/2)3*(3C0)*(1/2)0*(1/2)3=27/64
P(Y=1)=P(X=0)*P(Y=1|X=0)+P(X=1)*P(Y=1|X=1)+P(X=2)*P(Y=1|X=2)+P(X=3)*P(Y=1|X=3)
=27/64
P(Y=2)=P(X=0)*P(Y=2|X=0)+P(X=1)*P(Y=2|X=1)+P(X=2)*P(Y=2|X=2)+P(X=3)*P(Y=2|X=3)
=9/64
P(Y=3)=P(X=0)*P(Y=3|X=0)+P(X=1)*P(Y=3|X=1)+P(X=2)*P(Y=3|X=2)+P(X=3)*P(Y=3|X=3)
=1/64
b)
E(Y)=yP(y)=0*(27/64)+1*(27/64)+2*(9/64)+3*(1/64) =0.75
c)
E(Y2)=y^2P(y)=0^2*(27/64)+1^2*(27/64)+2^2*(9/64)+3^2*(1/64) =1.125
Variance =E(Y2)-(E(Y))2 =0.5625
d)
standard deviation =sqrt(Var(Y))=0.75
Get Answers For Free
Most questions answered within 1 hours.