Question

Use the following regression model and statistical data for the dependent variable BUS TRAVEL. N =...

Use the following regression model and statistical data for the dependent variable BUS TRAVEL.

N = 40 Observations

Mean of Dependent Variable = 1933.175               

R-square = .0907

Standard Deviation of Dependent Variable = 2431.757

Error Sum of Squares = 1.821      

Standard Error of Residual = 742.911

F-statistic = 64.143

p-value = .0001

What is the level of confidence for the overall model?

Group of answer choices

95%

not significant at a 90%, 95%, or 99% confidence level

99%

90%

Homework Answers

Answer #1

we have given

N = 40 Observations

Mean of Dependent Variable = 1933.175               

R-square = .0907

Standard Deviation of Dependent Variable = 2431.757

Error Sum of Squares = 1.821      

Standard Error of Residual = 742.911

F-statistic = 64.143

p-value = .0001

since p value is less than 0.01,0.05,0.10 so the model will significant at 90,95 an 99 as well so

the best level of confidence for the overall model is 99%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Regression: First, choose any metric variable as the dependent variable and then choose any three other...
Regression: First, choose any metric variable as the dependent variable and then choose any three other metric variables as independent variables. HOWEVER, this process must be repeated until you find a model that produces a significant F-calc (p-value (sig) <.05). Thus, you may have to sort through several combinations of dependent and independent variables before finding a combination that produces a significant F-calc. This is actually quite easy to do in SPSS using the drop down menus as shown in...
The ANOVA summary table to the right is for a multiple regression model with six independent...
The ANOVA summary table to the right is for a multiple regression model with six independent variables. Complete parts​ (a) through​ (e). Source: Degrees of Freedom / Sum of Squares Regression 6 90 Error 14 170 Total 20 260 a. Determine the regression mean square​ (MSR) and the mean square error​ (MSE). MSR= ​ (Round to four decimal places as​ needed.) MSE=   (Round to four decimal places as​ needed.) b. Compute the overall F STAT test statistic. (Round to two...
Hello, I have computed a regression model where the dependent variable is "earn" as in how...
Hello, I have computed a regression model where the dependent variable is "earn" as in how much money the student will earn after college. My independent variables include "public" as in was this college public(1) or private(0), "academic ability" (a score calculated as the average score from SAT/ACT data of admitted students), "Average Cost" of tuition and  "population" (of the city the college is in). What is the impact on earnings of higher population of the college area/city? SUMMARY OUTPUT Regression...
The statistical significance of the variable StudFac is ………….. MODEL - Coefficientsa Model Unstandardized Coefficients Standardized...
The statistical significance of the variable StudFac is ………….. MODEL - Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. B Std. Error Beta 1 (Constant) 14.134 11.080 1.276 .209 Classunder .435 .134 .495 3.255 .002 StudFac -1.056 1.007 .362 -2.916 .006 a. Dependent Variable: Alumnigiving 99% 90% No statistical significance 95%
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple...
SUMMARY OUTPUT Dependent X variable: all other variables Regression Statistics Independent Y variable: oil usage Multiple R 0.885464 R Square 0.784046 variation Adjusted R Square 0.76605 Standard Error 85.4675 Observations 40 ANOVA df SS MS F Significance F Regression 3 954738.9 318246.3089 43.56737 4.55E-12 Residual 36 262969 7304.693706 Total 39 1217708 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -218.31 63.95851 -3.413304572 0.001602 -348.024 -88.596 -348.024 -88.596 Degree Days 0.275079 0.036333 7.571119093 5.94E-09...
Data needs to be analyzed For this assignment I have to analyze the regression (relationship between...
Data needs to be analyzed For this assignment I have to analyze the regression (relationship between 2 independent variables and 1 dependent variable). Below is all of my data and values. I need help answering the questions that are at the bottom. Questions regarding the strength of the relationship   Sum of X1 = 184.6 Sum of X2 = 21307.03 Sum of Y = 2569.1 Mean X1 = 3.6196 Mean X2 = 417.7849 Mean Y = 50.3745 Sum of squares (SSX1)...
Following is a simple linear regression model: The following results were obtained from some statistical software....
Following is a simple linear regression model: The following results were obtained from some statistical software. R2 = 0.523 syx (regression standard error) = 3.028 n (total observations) = 41 Significance level = 0.05 = 5% Variable Parameter Estimate    Std. Error of Parameter Est. Intercept 0.519    0.132 Slope of X    -0.707 0.239 Questions: the correlation coefficient r between the x and y is? What is the meaning of R2? Show your work.
In regression analysis, the total variation in the dependent variable, measured by the total sum of...
In regression analysis, the total variation in the dependent variable, measured by the total sum of squares (SST), can be decomposed into two parts: the amount of variation that can be explained by the regression model, and the remaining unexplained variation. True False In employing the randomised block design of ANOVA, the primary interest lies in reducing the within-treatments variation in order to make easier to detect differences between the treatment means. True False If we reject the null hypothesis,...
(7) A regression analysis was used in a study about perceived strength (str) and body condition...
(7) A regression analysis was used in a study about perceived strength (str) and body condition (cond) among seniors, both measures are in the range of 0-100. Answer questions based on the given output                                                              Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .880a .704 .701 2.404 a. Predictors: (Constant), str ANOVAb Model Sum of Squares df Mean Square F Sig. 1 Regression 688.725 1 688.725 101.665 .002a Residual 2553.465 414 6.168 Total...
Use Data Analysis in Excel to conduct the Regression Analysis to reproduce the excel out put...
Use Data Analysis in Excel to conduct the Regression Analysis to reproduce the excel out put below (Note: First enter the data in the next page in an Excel spreadsheet) Home Sale Price: The table below provides the Excel output of a regression analysis of the relationship between Home sale price(Y) measured in thousand dollars and Square feet area (x):    SUMMARY OUTPUT Dependent: Home Price ($1000) SUMMARY OUTPUT Dependent: Home Price ($1000) Regression Statistics Multiple R 0.691 R Square 0.478...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT