Question

3. The flu virus infects 1 in every 250 people. The test used to detect the...

3. The flu virus infects 1 in every 250 people. The test used to detect the flu shows a positive result 70% of the time when the person actually has the flu and shows a positive result 15% of the time when a person does not have the flu. Event A will be a “person who is infected”. Event B will be a “person who tests positive.” Hint: Use a tree diagram.

(a) Given that a person tests positive, what is the probability that the person is infected?

13(a) _________

(b) Given that a person is not infected, what is the probability that the person tests

negative?

13(b) _______


Homework Answers

Answer #1

I have answered the question below

Please up vote for the same and thanks!!!

Do reach out in the comments for any queries

Answer:

a)

Bayes' Theorem: P(A | B) = P(A & B) / P(B)

P(has virus | tested positive) = P(has virus and tested positive) / P(tested positive)

= P(has virus and tested positive) / [P(has virus and tested positive) + P(doesn't have virus and tested positive)]

= (0.004 x 0.7) / [(0.004 x 0.7) + (0.996 x 0.15)]

=0.0184

b)

P(tests negative | does not have virus) = P(tests negative and does not have virus) / P(does not have virus)

= P(tests negative and does not have virus) / [P(does not have virus and tested negative) + P(doesn't have virus and tested positive)]

= (0.996*0.85)/((0.996*0.85)+(0.996*0.15))

= 0.85

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain virus infects one in every 200200 people. A test used to detect the virus...
A certain virus infects one in every 200200 people. A test used to detect the virus in a person is positive 9090​% of the time when the person has the virus and 1010​% of the time when the person does not have the virus.​ (This 1010​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a person tests​ positive, determine...
A certain virus infects one in every 200 people. A test used to detect the virus...
A certain virus infects one in every 200 people. A test used to detect the virus in a person is positive 80​% of the time when the person has the virus and 15​% of the time when the person does not have the virus.​ (This 15​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a person tests​ positive, determine...
A certain virus infects one in every 200 people. A test used to detect the virus...
A certain virus infects one in every 200 people. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 5% of the time if the person does not have the virus. (This 5% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". Hint: Make a Tree Diagram a) Find the probability that...
A certain virus infects one in every 300 300 people. A test used to detect the...
A certain virus infects one in every 300 300 people. A test used to detect the virus in a person is positive 90 90​% of the time when the person has the virus and 10 10​% of the time when the person does not have the virus.​ (This 10 10​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a...
A certain virus infects one in every 400 people. A test used to detect the virus...
A certain virus infects one in every 400 people. A test used to detect the virus in a person is positive 90% of the time if the person has the virus and 10% of the time if the person does not have the virus. Let A be the event "the person is infected" and B be the event "the person tests positive." (a) Find the probability that a person has the virus given that they have tested positive. (b) Find...
A certain virus infects one in every 2000 people. a test used to detect the virus...
A certain virus infects one in every 2000 people. a test used to detect the virus in a person is positive 96% of the time if the person has the virus and 4% of the time if the person does not have the virus. Let A be the event "that the person is infected" and B be the event "the person tests positive."Find the probability that a person does not have the virus given that they test negative, i.e. find...
A certain virus infects one in every 200 people. A test used to detect the virus...
A certain virus infects one in every 200 people. A test used to detect the virus in a person is positive 85% of the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". a) Find the probability that a person has the virus...
A certain virus infects one in every 300 people. A test used to detect the virus...
A certain virus infects one in every 300 people. A test used to detect the virus in a person is positive 80% of the time if the person has the virus and 8% of the time if the person does not have the virus. (This 8% result is called a false positive.) Let A be the event "the person is infected" and B be the event "the person tests positive". a) Find the probability that a person has the virus...
A certain virus infects 5% of the population. A test used to detect the virus in...
A certain virus infects 5% of the population. A test used to detect the virus in a person is positive 80% of the time if the person has the virus, and 10% of the time if the person does not have the virus. a. What is the probability that a randomly selected person tested positive and has the virus? b. What is the probability that a randomly selected person tested positive and does not have the virus? c. What is...
A virus has a rare occurrence:   the virus occurs,   on average,     20 out of every 200000...
A virus has a rare occurrence:   the virus occurs,   on average,     20 out of every 200000 people. An antibody test has been devised.    Among those with the virus,    the test correctly detects the person has been infected with probability 0.95.       Among those without the virus,   the test correctly identifies the person as virus free 0.95 % of the time. Suppose  you have tested positive for the disease.    How worried should you be? Answer this by computing your probability of having the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT