Question

Show if X ~ F( p, q) , then [(p/q) X]/[1+(p/q)X] ~ beta (p/2, q/2). Use...

Show if X ~ F( p, q) , then [(p/q) X]/[1+(p/q)X] ~ beta (p/2, q/2). Use transformation method.

Homework Answers

Answer #1

ssecond method:-

X~ F(p,q)

For F-distribution

where

Then

and W and V are independent

Here

Then

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
i) show that the function f: Q->Q defined by f(x)=1/((x^2)-2) is continuous at all x in...
i) show that the function f: Q->Q defined by f(x)=1/((x^2)-2) is continuous at all x in Q,but that it is unbounded on [0,2]Q. Compare to the extremal value Theorem.
If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2)...
If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2) defines an inner product in P3. Use this inner product to find , ||p||, ||q||, and the angle θ between p(x) and q(x) for p(x)=2x^2+3 and q(x)=2x^2−6x.
1. Remember a geometric distribution has density f(x) = (1 − p) ^(x−1)p , E(X) =...
1. Remember a geometric distribution has density f(x) = (1 − p) ^(x−1)p , E(X) = 1/p , and V (X) = q/p^2 . (a) Use the method of moments to create a point estimator for p. (b) Use the method of maximum likelihood to create another point estimator for p. (It may or may not be the same). (c) Let a random sample be 5, 2, 6, 5, 4. Use your estimator (either) to create a point estimate for...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
Suppose g: P → Q and f: Q → R where P = {1, 2, 3,...
Suppose g: P → Q and f: Q → R where P = {1, 2, 3, 4}, Q = {a, b, c}, R = {2, 7, 10}, and f and g are defined by f = {(a, 10), (b, 7), (c, 2)} and g = {(1, b), (2, a), (3, a), (4, b)}. (a) Is Function f and g invertible? If yes find f −1 and    g −1 or if not why? (b) Find f o g and g o...
Let p and q be two real numbers with p > 0. Show that the equation...
Let p and q be two real numbers with p > 0. Show that the equation x^3 + px +q= 0 has exactly one real solution. (Hint: Show that f'(x) is not 0 for any real x and then use Rolle's theorem to prove the statement by contradiction)
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) =...
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) = ∪A∈F f −1 (A) f −1 (∩A∈F A) = ∩A∈F f −1 (A) Show, if A, B ⊆ X, then f(A ∩ B) ⊆ f(A) ∩ f(B). Give an example, if possible, where strict inclusion holds. Show, if C ⊆ X, then f −1 (f(C)) ⊇ C. Give an example, if possible, where strict inclusion holds.
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) =...
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) = ∪A∈F f −1 (A) and  f −1 (∩A∈F A) = ∩A∈F f −1 (A).
Let X,..., Xn be exponential with mean beta. Find UMVUEs for beta, beta^2, beta^3. (Use the...
Let X,..., Xn be exponential with mean beta. Find UMVUEs for beta, beta^2, beta^3. (Use the version of the exponential distribution with PDF p(x)= 1/beta e^(-x/beta) (x>0), and so Mx(t)=(1-beta(t))^-1.)
How to solve this equation to find f(n), where f(n)=1+p*f(n+1)+q*f(n-1). p,q are constant and p+q=1. We...
How to solve this equation to find f(n), where f(n)=1+p*f(n+1)+q*f(n-1). p,q are constant and p+q=1. We already know two point f(0)=f(d)=0, d is a constant number. what is f(n) as a function with p,q,d,n?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT