Question

Q3. Suppose you toss n “fair” coins (i.e., heads probability = 1/21/2). For every coin that...

Q3. Suppose you toss n “fair” coins (i.e., heads probability = 1/21/2). For every coin that came up tails, suppose you toss it one more time. Let X be the random variable denoting the number of heads in the end.

  1. What is the range of the variable X (give exact upper and lower bounds)

  2. What is the distribution of X? (Write down the name and give a convincing explanation.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose you toss two fair coins, with four possible outcomes. x = heads and y =...
Suppose you toss two fair coins, with four possible outcomes. x = heads and y = tails What is E(w) if w = 2x+3y?
You toss a fair coin four times. The probability of two heads and two tails is
You toss a fair coin four times. The probability of two heads and two tails is
Suppose you toss a fair coin three times. Which of the following events are independent? Give...
Suppose you toss a fair coin three times. Which of the following events are independent? Give mathematical justification for your answer.     A= {“heads on first toss”}; B= {“an odd number of heads”}. A= {“no tails in the first two tosses”}; B=     {“no heads in the second and third toss”}.
An unfair coin is such that on any given toss, the probability of getting heads is...
An unfair coin is such that on any given toss, the probability of getting heads is 0.6 and the probability of getting tails is 0.4. The coin is tossed 8 times. Let the random variable X be the number of times heads is tossed. 1. Find P(X=5). 2. Find P(X≥3). 3. What is the expected value for this random variable? E(X) = 4. What is the standard deviation for this random variable? (Give your answer to 3 decimal places) SD(X)...
Your friend claims he has a fair coin; that is, the probability of flipping heads or...
Your friend claims he has a fair coin; that is, the probability of flipping heads or tails is equal to 0.5. You believe the coin is weighted. Suppose a coin toss turns up 15 heads out of 20 trials. At α = 0.05, can we conclude that the coin is fair (i.e., the probability of flipping heads is 0.5)? You may use the traditional method or P-value method.
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin #2, which lands heads with probability 0.1. I conduct an experiment as follows. First I toss a fair coin to decide which biased coin I pick (say, if it lands heads, I pick coin #1, and otherwise I pick coin #2) and then I toss the biased coin twice. Let A be the event that the biased coin #1 is chosen, B1 the event...
Suppose you toss a coin 100 times. Should you expect to get exactly 50 heads? Why...
Suppose you toss a coin 100 times. Should you expect to get exactly 50 heads? Why or why not? A. Yes, because the number of tosses is even, so if the coin is fair, half of the results should be heads. B. No, because the chance of heads or tails is the same, the chance of any number of heads is the same. C. No, there will be small deviations by chance, but if the coin is fair, the result...
Suppose we toss a fair coin twice. Let X = the number of heads, and Y...
Suppose we toss a fair coin twice. Let X = the number of heads, and Y = the number of tails. X and Y are clearly not independent. a. Show that X and Y are not independent. (Hint: Consider the events “X=2” and “Y=2”) b. Show that E(XY) is not equal to E(X)E(Y). (You’ll need to derive the pmf for XY in order to calculate E(XY). Write down the sample space! Think about what the support of XY is and...
Suppose we toss a fair coin three times. Consider the events A: we toss three heads,...
Suppose we toss a fair coin three times. Consider the events A: we toss three heads, B: we toss at least one head, and C: we toss at least two tails. P(A) = 12.5 P(B) = .875 P(C) = .50 What is P(A ∩ B), P(A ∩ C) and P(B ∩ C)? If you can show steps, that'd be great. I'm not fully sure what the difference between ∩ and ∪ is (sorry I can't make the ∪ bigger).
Suppose you toss three fair coins independently and X is the number of tails on each...
Suppose you toss three fair coins independently and X is the number of tails on each toss. (a) Determine the probability mass function of X. (b) Define W = |2−X|. Determine the probability mass function of W.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT