Question

Let X and Y be independent positive random variables. Let Z=X/Y. In what follows, all occurrences...

Let X and Y be independent positive random variables. Let Z=X/Y. In what follows, all occurrences of x, y, z are assumed to be positive numbers.

1. Suppose that X and Y are discrete, with known PMFs, pX and pY. Then, pZ|Y(z|y)=pX(?). What is the argument in the place of the question mark?

2. Suppose that X and Y are continuous, with known PDFs, fX and fY. Provide a formula, analogous to the one in part (a), for fZ|Y(z|y) in terms of fX. That is, find A and B in the formula below. fZ|Y(z|y)=AfX(B).

A=

B=

3. Which of the following is a formula for fZ(z)? fZ(z)= (Choose all that apply.)

fZ(z)=∫∞0fY,Z(y,z)dy

fZ(z)=∫∞0fY,Z(y,z)dz

fZ(z)=∫∞0fY(y)fZ,Y(z,y)dy

fZ(z)=∫∞0fY(y)fZ|Y(z|y)dy

fZ(z)=∫∞0fY(y)fX(yz)dy

fZ(z)=∫∞0yfY(y)fX(yz)dy

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be two independent random variables. Given the marginal pdfs indicated below, find...
Let X and Y be two independent random variables. Given the marginal pdfs indicated below, find the cdf of Y/X. (Hint: Consider two cases, 0 ≤ w ≤ 1 and 1.) (a) fx (x) =1, 0 ≤ x ≤ 1, and fγ (y)=1, 0 ≤ y ≤ 1 (b) fx (x)=2x,0 ≤x ≤1, and fy(y)=2y, 0 ≤y ≤1
Let f(x,y,z)=exy4z5+xy2+y3z Calculate. fx fy fz fxx fxy fyy fxz fyz fzz fzyy fxxy fxxyz 1
Let f(x,y,z)=exy4z5+xy2+y3z Calculate. fx fy fz fxx fxy fyy fxz fyz fzz fzyy fxxy fxxyz 1
Let X and Y be independent random variables with density functions given by fX (x) =...
Let X and Y be independent random variables with density functions given by fX (x) = 1/2, −1 ≤ x ≤ 1 and fY (y) = 1/2, 3 ≤ y ≤ 5. Find the density function of X-Y.
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density...
Let X and Y be continuous random variables with joint density function f(x,y) and marginal density functions fX(x) and fY(y) respectively. Further, the support for both of these marginal density functions is the interval (0,1). Which of the following statements is always true? (Note there may be more than one)    E[X^2Y^3]=(∫0 TO 1 x^2 dx)(∫0 TO 1 y^3dy)    E[X^2Y^3]=∫0 TO 1∫0 TO 1x^2y^3 f(x,y) dy dx    E[Y^3]=∫0 TO 1 y^3 fX(x) dx   E[XY]=(∫0 TO 1 x fX(x)...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z = max(X1, X2). (a) Show that Y ∼ expon(2λ) (b) Find E(Y ) and E(Z). (c) Find the conditional density fZ|Y (z|y). (d) FindP(Z>2Y).
(part a) Assume that x and y are positive functions of t. If x2 + y2...
(part a) Assume that x and y are positive functions of t. If x2 + y2 = 100 and dy/dt = 4, find dx/dt when y = 6. (part b) Suppose x, y, and z are positive functions of t. If z2 = x2 + y2, dx/dt = 2, and dy/dt = 3, find dz/dt when x = 5 and y = 12.
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having...
Let X, Y, and Z be independent and identically distributed discrete random variables, with each having a probability distribution that puts a mass of 1/4 on the number 0, a mass of 1/4 at 1, and a mass of 1/2 at 2. a. Compute the moment generating function for S= X+Y+Z b. Use the MGF from part a to compute the second moment of S, E(S^2) c. Compute the second moment of S in a completely different way, by expanding...
Independence. Suppose X and Y are independent. Let W = h(X) and Z = l`(Y )...
Independence. Suppose X and Y are independent. Let W = h(X) and Z = l`(Y ) for some functions h and `. Make use of IEf(X)g(Y ) = IEf(X)IEg(Y ) for all f and g greater or equal to 0 types of random variables, not just discrete random variables. a) Show that X and Z are independent. b) Show that W and Z are independent. c) Suppose Z = l`(Y ) and all we know is that X and Z...
2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and...
2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and sigma^2 y. Let Z = 1/2(X + Y) and W =1/2 (X - Y) a. Find the joint pdf fz, w(z, w). b. Find the marginal pdf f(z). c. Are Z and W independent?
Let X and Y be discrete random variables, their joint pmf is given as Px,y =...
Let X and Y be discrete random variables, their joint pmf is given as Px,y = ?(? + ? + 2)/(B + 2) for 0 ≤ X < 3, 0 ≤ Y < 3 Where B=2. a) Find the value of ? b) Find the marginal pmf of ? and ? c) Find conditional pmf of ? given ? = 2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT