Question

Let X1 and X2 be two independent geometric random variables with the probability of success 0...

Let X1 and X2 be two independent geometric random variables with the probability of success 0 < p < 1. Find the joint probability mass function of (Y1, Y2) with its support, where Y1 = X1 + X2 and Y2 = X2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1 and X2 be independent random variables with joint pdf f(x1, x2) =x1e^−(x1+x2), 0< x1<∞,...
Let X1 and X2 be independent random variables with joint pdf f(x1, x2) =x1e^−(x1+x2), 0< x1<∞, 0< x2<∞. Y1= 2X1 and Y2=X2−X1. I) Find g(y1, y2), the joint pdf of Y1, Y2 Include and draw the support. II) Find g1(y1), the marginal pdf of Y1. III) Find E(Y1).
Let each of the independent random variables X1 and X2 have the density function f(x) -...
Let each of the independent random variables X1 and X2 have the density function f(x) - e^-x for 0<x< inf., and f(x) = 0, otherwise. What is the joint density of Y1 = X1 and Y2 = 2X1 + 3X2 and the domain on which this density is positive?
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find...
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find the conditional probability mass function P(X1 = k | X1 + X2 = n).
5) Let X1, X2, and X3 be independent random variables with the following probability density function,...
5) Let X1, X2, and X3 be independent random variables with the following probability density function, f(x) = 2 − 2x for 0 < x < 1; f(x) = 0 otherwise. a) Find the probability that X1 exceeds 1/2. b) Find the probability that exactly one of the three variables exceeds 1/2. 6) The pdf of X is fX(x) = 4xe−2x , x > 0. a) Find E(X). b) Find Var(X). 7) The joint pdf of X and Y is...
Let f(x1, x2) = 1 , 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤...
Let f(x1, x2) = 1 , 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1 be the joint pdf of X1 and X2 . Y1 = X1 + X2 and Y2 = X2 . (a) E(Y1) . (b) Var(Y1) (c) Consider the marginal pdf of Y1 , g(y1) . What is value of g(y1) where y1 = 1/3 and y1 = 6/4 ?
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1).
1. An electronic system has two different types of components in joint operation. Let X1 and...
1. An electronic system has two different types of components in joint operation. Let X1 and X2 denote the Random Length of life in hundreds of hours of the components of Type I and Type II (Type 1 and Type 2), respectively. Suppose that the joint probability density function (pdf) is given by f(x1, x2) = { (1/8)y1 e^-(x1 + x2)/2, x1 > 0, x2 > 0 0 Otherwise. a.) Show that X1 and X2 are independent. b.) Find E(Y1+Y2)...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT