Question

If f(x) is a probability density function of a continuous random variable, then f(x)=?

a-0

b-undefined

c-infinity

d-1

Answer #1

There is some misprint in the question. I think it's asking what is integral of f(x).. In that case answer would be option d which is 1.

Because f(x) is already given to be a probablity density function and it's values when summed for all the given domain must lie between 0 to 1 beacuse it represents probability. It can never be infinity.

For continous random variable the absolute likelihood is 0 because a point has almost zero probability to occur in a continous range of data, so we use probability density function to assign a relative likelihood over a range of values around that point to avoid it from being zero.

Consider a continuous random variable X with the probability
density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere.
a) Find the value of C that makes f X ( x ) a valid probability
density function. b) Find the cumulative distribution function of
X, F X ( x ).

6. A continuous random variable X has probability density
function
f(x) =
0 if x< 0
x/4 if 0 < or = x< 2
1/2 if 2 < or = x< 3
0 if x> or = 3
(a) Find P(X<1)
(b) Find P(X<2.5)
(c) Find the cumulative distribution function F(x) = P(X< or
= x). Be sure to define the function for all real numbers x. (Hint:
The cdf will involve four pieces, depending on an interval/range
for x....

Probability density function of the continuous random variable X
is given by f(x) = ( ce −1 8 x for x ≥ 0 0 elsewhere
(a) Determine the value of the constant c.
(b) Find P(X ≤ 36).
(c) Determine k such that P(X > k) = e −2 .

suppose x is a continuous random variable with probability
density function f(x)= (x^2)/9 if 0<x<3 0 otherwise
find the mean and variance of x

Part A
The variable X(random variable) has a density function of the
following
f(x) = {5e-5x if 0<= x < infinity and 0
otherwise}
Calculate E(ex)
Part B
Let X be a continuous random variable with probability density
function
f (x) = {6/x2 if 2<x<3 and 0 otherwise }
Find E (ln (X)).
.

1 (a) Let f(x) be the probability density function of a
continuous random variable X defined by
f(x) = b(1 - x2), -1 < x < 1,
for some constant b. Determine the value of b.
1 (b) Find the distribution function F(x) of X . Enter the value
of F(0.5) as the answer to this question.

Let X be a continuous random variable with the probability
density function f(x) = C x, 6 ≤ x ≤ 25, zero otherwise.
a. Find the value of C that would make f(x) a valid probability
density function. Enter a fraction (e.g. 2/5): C =
b. Find the probability P(X > 16). Give your answer to 4
decimal places.
c. Find the mean of the probability distribution of X. Give your
answer to 4 decimal places.
d. Find the median...

Let X be a continuous random variable with probability density
function (pdf) ?(?) = ??^3, 0 < ? < 2.
(a) Find the constant c.
(b) Find the cumulative distribution function (CDF) of X.
(c) Find P(X < 0.5), and P(X > 1.0).
(d) Find E(X), Var(X) and E(X5 ).

Let X be a continuous random variable with the following
probability density function:
f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere
(i) Find P(0.5 < X < 2).
(ii) Find the value such that random variable X exceeds it 50%
of the time. This value is called the median of the random variable
X.

Let X be a random variable with probability density function
f(x) = { λe^(−λx) 0 ≤ x < ∞
0 otherwise } for some λ > 0.
a. Compute the cumulative distribution function F(x), where F(x)
= Prob(X < x) viewed as a function of x.
b. The α-percentile of a random variable is the number mα such
that F(mα) = α, where α ∈ (0, 1). Compute the α-percentile of the
random variable X. The value of mα will...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 23 minutes ago

asked 26 minutes ago

asked 42 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago