Question

The distribution of weights of MP3 players is normally distributed with a mean of 6 ounces...

The distribution of weights of MP3 players is normally distributed with a mean of 6 ounces and a standard deviation of 2.5 ounces. What is the probability that a randomly chosen MP3 player has a weight of less than 4 ounces? Round to four decimal places. Put a zero in front of the decimal point.

The distribution of weights of MP3 players is normally distributed with a mean of 6 ounces and a standard deviation of 2.5 ounces. 20% of MP3 players are less than what weight? Round to the nearest hundredth

Homework Answers

Answer #1

Solution :

Given that ,

mean = = 6

standard deviation = = 2.5

P(x < 4) = P[(x - ) / < (4 - 6) / 2.5]

= P(z < -0.8)

= 0.2119

Probability = 0.2119

mean = = 6

standard deviation = = 2.5

Using standard normal table ,

P(Z < z) = 20%

P(Z < -0.84) = 0.2

z = -0.84

Using z-score formula,

x = z * +

x = -0.84 * 2.5 + 6 = 3.9

weight 3.90

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.9 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.9 ounces and a standard deviation of 1.1 ounces. (a) If 5 potatoes are randomly selected, find the probability that the mean weight is less than 9.5 ounces. Round your answer to 4 decimal places. (b) If 6 potatoes are randomly selected, find the probability that the mean weight is more than 8.9 ounces. Round your answer to 4 decimal places.
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.9 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.9 ounces and a standard deviation of 1.3 ounces. (a) If 4 potatoes are randomly selected, find the probability that the mean weight is less than 9.3 ounces. Round your answer to 4 decimal places. (b) If 7 potatoes are randomly selected, find the probability that the mean weight is more than 8.5 ounces. Round your answer to 4 decimal places.
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 8.1 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 8.1 ounces and a standard deviation of 1.2 ounces. (a) If 5 potatoes are randomly selected, find the probability that the mean weight is less than 9.8 ounces. Round your answer to 4 decimal places. (b) If 8 potatoes are randomly selected, find the probability that the mean weight is more than 9.4 ounces. Round your answer to 4 decimal places.
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.8 ounces...
Suppose the weights of Farmer Carl's potatoes are normally distributed with a mean of 7.8 ounces and a standard deviation of 1.2 ounces. (a) If 5 potatoes are randomly selected, find the probability that the mean weight is less than 8.9 ounces. Round your answer to 4 decimal places. (b) If 7 potatoes are randomly selected, find the probability that the mean weight is more than 9.2 ounces. Round your answer to 4 decimal places.
The weights of ice cream cartons are normally distributed with a mean weight of 8 ounces...
The weights of ice cream cartons are normally distributed with a mean weight of 8 ounces and a standard deviation of 0.5 ounce. ​(a) What is the probability that a randomly selected carton has a weight greater than 8.12 ​ounces? ​(b) A sample of 36 cartons is randomly selected. What is the probability that their mean weight is greater than 8.12 ​ounces? ​(a) The probability is nothing. ​(Round to four decimal places as​ needed.)
Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed...
Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed with a mean of 2.5 years and a standard deviation of 0.7 years. Find the probability that a randomly selected portable MP3 player will have a replacement time less than 0.4 years? P(X < 0.4 years) = Enter your answer accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted. If the company wants to...
The weights of male basketball players on a certain college are normally distributed with a mean...
The weights of male basketball players on a certain college are normally distributed with a mean of 180 pounds and a standard deviation of 26 pounds. If a player is selected at random, find the probability that: a. The player will weigh more than 225 pounds b. The player will weigh less than 225 pounds c. The player will weigh between 180 and 225 pounds
Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed...
Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed with a mean of 3 years and a standard deviation of 0.5 years. Find the probability that a randomly selected portable MP3 player will have a replacement time less than 1.5 years? P(X < 1.5 years) = Enter your answer accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted. If the company wants to...
Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed...
Company XYZ know that replacement times for the portable MP3 players it produces are normally distributed with a mean of 3.7 years and a standard deviation of 0.8 years. Find the probability that a randomly selected portable MP3 player will have a replacement time less than 1.5 years? P(X < 1.5 years) = Enter your answer accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted. If the company wants to...
Suppose that the birth weights of infants are Normally distributed with mean 120 ounces and a...
Suppose that the birth weights of infants are Normally distributed with mean 120 ounces and a standard deviation of 18 ounces. (Note: 1 pound = 16 ounces.) a) Find the probability that a randomly selected infant will weight less than 5 pounds. b) What percent of babies weigh between 8 and 10 pounds at birth? c) How much would a baby have to weigh at birth in order for him to weight in the top 10% of all infants? d)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT