Question

A manager at a company analyzed the relationship between the weekly record sales and factors affecting...

A manager at a company analyzed the relationship between the weekly record sales and factors affecting its sales with a sample of 200 records. The independent variables included in the regression model are as follows: x1: Advertising budget (thousands of dollars), x2: No. of plays on radio per week, x3: Attractiveness of band, The following ANOVA summarizes the regression results.

Table 1: ANOVA

Source of Variation

df

Source of Squares

Mean Square

F

R Squared

Regression

861377.418

0.665

Residual or Error

434574.582

Total

199

1295952.0

1.  What are the degrees of freedom for Regression and Residual, respectively?

2. What are the value of the Regression mean square (MSR) and the Error mean square (MSE), respectively?

3. Evaluate this model with a global test at the 0.05 level of significance. The null hypothesis for this hypothesis test is ________.

4. Compute the global F-statistic for the model.

5. Find F-value for the critical value.

6. State a conclusion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A manager at a local bank analyzed the relationship between monthly salary (y, in $) and...
A manager at a local bank analyzed the relationship between monthly salary (y, in $) and length of service (x, measured in months) for 30 employees. She estimates the model: Salary = β0 + β1Service + ε. The following ANOVA table summarizes a portion of the regression results.     df SS MS F Regression 1 555,420 555,420 7.64 Residual 27 1,962,873 72,699 Total 28 2,518,293 Coefficients Standard Error t-stat p-value Intercept 784.92 322.25 2.44 0.02 Service 9.19 3.20 2.87 0.01...
A manager at a local bank analyzed the relationship between monthly salary (y, in $) and...
A manager at a local bank analyzed the relationship between monthly salary (y, in $) and length of service (x, measured in months) for 30 employees. She estimates the model: Salary = β0 + β1 Service + ε. The following ANOVA table summarizes a portion of the regression results. df SS MS F Regression 1 555,420 555,420 7.64 Residual 27 1,962,873 72,699 Total 28 2,518,293 Coefficients Standard Error t-stat p-value Intercept 784.92 322.25 2.44 0.02 Service 9.19 3.20 2.87 0.01...
A business is evaluating their advertising budget, and wishes to determine the relationship between advertising dollars...
A business is evaluating their advertising budget, and wishes to determine the relationship between advertising dollars spent and changes in revenue. Below is the output from their regression. SUMMARY OUTPUT Regression Statistics Multiple R 0.95 R Square 0.90 Adjusted R Square 0.82 Standard Error 0.82 Observations 8 ANOVA df SS MS F Significance F Regression 3 23.188 7.729 11.505 0.020 Residual 4 2.687 0.672 Total 7 25.875 Coefficients Std Error t Stat P-value Lower 95% Upper 95% Intercept 83.91 2.03...
A sales manager for an advertising agency believes there is a relationship between the number of...
A sales manager for an advertising agency believes there is a relationship between the number of contacts that a salesperson makes and the amount of sales dollars earned. A regression analysis shows the following results: Coefficients Standard Error t Stat p value Intercept −12.201 6.560 −1.860 0.100 Number of contacts 2.195 0.176 12.505 0.000 ANOVA df SS MS F Significance F Regression 1.00 13555.42 13555.42 156.38 0.00 Residual 8.00 693.48 86.68 Total 9.00 14248.90 Additional information needed to perform the...
QUESTION 19       Polynomial regression was used to predict sales (Y) using advertising expenditure (X) and...
QUESTION 19       Polynomial regression was used to predict sales (Y) using advertising expenditure (X) and its square (X2) as independent variables. The following information is available: Predictor Coefficients Standard Error Constant 328.42 29.42 X 10.970 1.832 X2 -.12507 .02586 ANOVA Source DF SS F Regression 42.56 Residual Total 11 14,107.7 Testing, at the .05 level of significance, if the quadratic term is useful for the prediction of sales, the alternative hypothesis is: a. Ha:  b1 ¹ 0 b. Ha:  b2 =...
The following data is used to study the relationship between miles traveled and ticket price for...
The following data is used to study the relationship between miles traveled and ticket price for a commercial airline: Distance in miles:        300      400      450      500      550      600      800      1000 Price charged in $:      140      220      230      250      255      288      350      480 SUMMARY OUTPUT Regression Statistics Multiple R                   0.987 R Square 0.975 Adjusted R Square 0.971 Standard Error 17.352 Observations 8 ANOVA df SS MS F Significance F Regression 1 70291.3 70291.3 233.4 4.96363E-06 Residual 6 1806.6 301.1 Total...
Data needs to be analyzed For this assignment I have to analyze the regression (relationship between...
Data needs to be analyzed For this assignment I have to analyze the regression (relationship between 2 independent variables and 1 dependent variable). Below is all of my data and values. I need help answering the questions that are at the bottom. Questions regarding the strength of the relationship   Sum of X1 = 184.6 Sum of X2 = 21307.03 Sum of Y = 2569.1 Mean X1 = 3.6196 Mean X2 = 417.7849 Mean Y = 50.3745 Sum of squares (SSX1)...
In models B through D, what seems to be the relationship between the burglary rate and...
In models B through D, what seems to be the relationship between the burglary rate and the percent of the 18-64 population who are young adults (18-24)? Select one: a. It is difficult to describe the relationship; the young adult variables were all significant at 5% in models B, C, and D, but the signs and sizes of the coefficients were very different between models. b. Conclusions about the relationship between young adults and the burglary rate are difficult to...
Zenith Computers, Texas would like to predict weekly Internet sales based on the number of orders....
Zenith Computers, Texas would like to predict weekly Internet sales based on the number of orders. Data (over 15 weeks), relating the sales volume (in thousands of dollars) to the number of orders were available. Regression analysis was performed using Excel. Output related to the regression is given below. Week Orders Sales ($1000) 1 265 15.3 2 150 18.4 3 131 11.6 . . . . . . SUMMARY OUTPUT Regression Statistics Multiple R 0.795 R Square 0.632 Adjusted R...
A marketing organization wishes to study the effects of four sales methods on weekly sales of...
A marketing organization wishes to study the effects of four sales methods on weekly sales of a product. The organization employs a randomized block design in which three salesman use each sales method. The results obtained are given in the following table, along with the Excel output of a randomized block ANOVA of these data. Salesman, j Sales Method, i A B C 1 40 31 28 2 43 29 23 3 33 22 19 4 32 19 17 ANOVA:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT