Question

A poker hand, which consists of 5 cards, is drawn from an ordinary deck. What is...

A poker hand, which consists of 5 cards, is drawn from an ordinary deck. What is the chance of the following events?

The first 2 cards and the last 2 cards are aces?

Homework Answers

Answer #1

The number of possible poker hands:

52c5 = 52!/5! × 47!

= 2,598,960

If we remove 4 aces from a deck of card we are left with 48 cards.

So, first and last two cards are aces. And we can place the rest 48 cards one by one into the middle of aces.

So number of ways the middle number can change = 48

And those four aces can change their places within themselves.

So number of ways the aces can change their places = 4! = 24

Number of such ways possible = 24 × 48 = 1152

Probability of this event = 1152/2598960 = 0.00044

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards....
A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 3 of these cards are Aces. Determine the probability that all five of these cards are Spades. Determine the probability that exactly 3 of these cards are face cards. Determine the...
Observe that a deck of poker cards consists of 4 aces, 12 face cards (Jacks, Queens,...
Observe that a deck of poker cards consists of 4 aces, 12 face cards (Jacks, Queens, and Kings), and 36 numbered cards (from 2s to 10s). If 10 cards are drawn from a deck of cards (with replacement and reshuffling after each draw), what is the probability that: (a) The 10 cards contain exactly 1 ace, 3 face cards, and 6 numbered cards? (b) The 10 cards contain at least three cards of each type (i.e. aces, face cards, numbered...
A) A poker hand consists of five cards randomly dealt from a standard deck of 52...
A) A poker hand consists of five cards randomly dealt from a standard deck of 52 cards. The order of the cards does not matter. Determine the following probabilities for a 5-card poker hand. Write your answers in percent form, rounded to 4 decimal places. Determine the probability that exactly 4 of these cards are Aces. Answer: % Determine the probability that all five of these cards are Spades. Answer: % Determine the probability that exactly 4 of these cards...
5 cards are randomly selected from a standard deck of 52 cards to form a poker...
5 cards are randomly selected from a standard deck of 52 cards to form a poker hand. Determine the probability of being dealt a straight flush (five cards in sequence in the same suit but not a royal flush. Note: A royal flush is 10, Jack, Queen, King, Ace all in the same suit. Note: Aces can be high or low).
i have a hand that consists of 7 cards drawn from a standard 52 card deck....
i have a hand that consists of 7 cards drawn from a standard 52 card deck. whats the probablity of having a hand with entirely cards that are not face cards/ an ace, or a hand with all clubs
1. A five-card poker hand is dealt from a standard deck of cards. Find the probability...
1. A five-card poker hand is dealt from a standard deck of cards. Find the probability that: a. The hand contains exactly 3 Clubs and exactly 1 Spade. b. The hand contains at least two aces c. The hand contains all cards from the same suit d. The hand contains three cards from one suit and two cards from different suit e. The hand contains no more than one spade
Q19. Consider an ordinary 52-card North American playing deck (4 suits, 13 cards in each suit)....
Q19. Consider an ordinary 52-card North American playing deck (4 suits, 13 cards in each suit). a) How many different 5−card poker hands can be drawn from the deck? b) How many different 13−card bridge hands can be drawn from the deck? c) What is the probability of an all-spade 5−card poker hand? d) What is the probability of a flush (5−cards from the same suit)? e) What is the probability that a 5−card poker hand contains exactly 3 Kings...
A standard deck consists of 52 cards of which 4 are aces, 4 are kings, and...
A standard deck consists of 52 cards of which 4 are aces, 4 are kings, and 12 (including the four kings) are "face cards" (Jacks, Queens, and Kings). Cards are dealt at random without replacement from a standard deck till all the cards have been dealt. Find the expectation of the following. Each can be done with almost no calculation if you use symmetry. a) The number of aces among the first 5 cards b) The number of face cards...
You deal 5 cards from a well-shuffled full deck. (note that there are 52 cards in...
You deal 5 cards from a well-shuffled full deck. (note that there are 52 cards in a full deck and among these, there are exactly 4 aces and 4 kings (likewise 4 of each of the 13 ranks) in the full deck) a) What is the probability that you get exactly 3 aces among the 5 cards? b) What is the probability that you get exactly 2 kings among the 5 cards? c) What is the probability that you get...
3 )One is dealt 6 cards from a standard poker deck of 52 cards. a)What is...
3 )One is dealt 6 cards from a standard poker deck of 52 cards. a)What is the probability of getting 3 aces and 3 kings? b)What is the probability of getting the same except both pairs kings and aces are of the same suit (e.g., the same suit is missing from both).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT