Question

In a group of 12 international referees, there are three from Africa, four from Asia and...

In a group of 12 international referees, there are three from Africa, four from Asia and five from Europe. To officiate at a tournament, three referees are chosen at random from the group. Find the probability that:
i) A referee is chosen from each Continent.
ii) Two referees are chosen from Asia.
iii) All the three referees are chosen from the same Continent.

Homework Answers

Answer #1

Solution-

Given data,

n=12

n1=3

n2=4

n3=5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Five persons are chosen at random from a group of ten persons consisting of four men...
Five persons are chosen at random from a group of ten persons consisting of four men and six women. Calculate the probability that there are more women chosen than men.
Consider the following allele frequencies for three SNPs SNP1 SNP2 SNP3 Africa A:20%,T:80% G:70%,T:30% C:20%,A:80% Asia...
Consider the following allele frequencies for three SNPs SNP1 SNP2 SNP3 Africa A:20%,T:80% G:70%,T:30% C:20%,A:80% Asia A:50%,T:50% G:20%,T:80% C:20%,A:80% South America A:60%,T:40% G:80%,T:20% C:70%,A:30% For each genotype, calculate the genotype frequency in Africa and Asia. Can someone please help me? Showing all the steps. I don't know what to do. Thank you!
From a group of 10 boys and 12 ​girls, a committee of 5 students is chosen...
From a group of 10 boys and 12 ​girls, a committee of 5 students is chosen at random. a. What is the probability that all 5 members on the committee will be​ girls? b. What is the probability that all 5 members of the committee will be​ boys? c. What is the probability that there will be at least 1 girl on the​ committee? (please show all the work, as I am very confused)
A volunteer from a group of three individuals is be chosen by having each toss a...
A volunteer from a group of three individuals is be chosen by having each toss a coin with probability of head α. The individual with the unique outcome is chosen. If the three tosses result in the same outcome, then the three individuals toss their coins again, and the process continues until a volunteer is chosen. a) Let q denote the probability of a unique outcome in a given trial. Find q? b) Let N denote the number of trials...
261.- In room 1 there are seven students, of which four are studying engineering and three...
261.- In room 1 there are seven students, of which four are studying engineering and three will act, in room 2 there are 8 students, of which three are studying engineering and five are acting. A random student from room 2 is moved to room 1 and then a random student from room 1 is chosen. Determine the probability that he is an engineering student. 263.-urn 1 contains two white and two black spheres, urn 2 contains two white and...
Noah randomly chooses four people to be on his basketball team from a group of 12...
Noah randomly chooses four people to be on his basketball team from a group of 12 people (seven in grade 11, five in grade 12). a. The random variable is the number of grade 12s on his team. Determine P(0) and explain what it means. b. Create a probability distribution table and histogram for the number of grade 12s on his team. c. What is the expected number of grade 12s on the team?
1.a) Nine men and two women are semifinalists in a lottery. From this group, seven finalists...
1.a) Nine men and two women are semifinalists in a lottery. From this group, seven finalists are to be selected by a drawing. What is the probability that all seven finalists will be men? (Enter your probability as a fraction.) b) retailer purchases 240 of a new brand of DVD player, of which 4 are defective. The purchase agreement says that if he tests 5 chosen at random and finds 1 or more defective, he receives all the DVD players...
A committee of four congressmen will be selected from a group of five Republicans and two...
A committee of four congressmen will be selected from a group of five Republicans and two Democrats. Find the number of ways of obtaining a committee with exactly three Republicans.?
1. a. three letters are selected from the word CAMERAMAN. i. Determine the number of selections...
1. a. three letters are selected from the word CAMERAMAN. i. Determine the number of selections if the three letters include one M and one A ii. Determine the number of selections if the three letters include at least one M b. Three students are chosen at random. Find the probability that one is studying English and two are girls.
A committee of four is to be chosen from a group of six men and seven...
A committee of four is to be chosen from a group of six men and seven women. a) How many different committees are possible? b) What is the probability that committee consists of two men and two women? c) What is the probability that committee consists of at least two women?