Question

We toss a fair coin twice, define A ={the first toss is head}, B ={the second...

We toss a fair coin twice, define A ={the first toss is head}, B ={the second toss is tail}, and C={the two tosses have different outcomes}. Show that events A, B, and C are pairwise independent but not mutually independent.

Homework Answers

Answer #1

We are given here that:
A ={the first toss is head},
B ={the second toss is tail},
C={the two tosses have different outcomes}

P( A and B) = P( first coin id heads and second toss is tail) = 0.5*0.5 = 0.25

P(A) = P(B) = 0.5
Therefore, P(A and B) = P(A)P(B) = 0.25

Therefore A, B are pairwise independent events.

P(C) = P(HT) + P(TH) = 0.25 + 0.25 = 0.5

P(A and C) = P(first coin toss is head and second is tail) = 0.25 = P(A)P(C)
Therefore A and C are pairwise independent.

P(B and C) = P(second coin is tail and first is heads) = 0.25 = P(B)P(C)
Therefore B and C are pairwise independent events.

P(A and B and C) = P(first toss is heads and second is tail) = 0.25 which is not equal to P(A)P(B)P(C) = 0.125

Therefore: A, B and C are not mutually independent.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A coin is tossed twice. Consider the following events. A: Heads on the first toss. B:...
A coin is tossed twice. Consider the following events. A: Heads on the first toss. B: Heads on the second toss. C: The two tosses come out the same. (a) Show that A, B, C are pairwise independent but not independent. (b) Show that C is independent of A and B but not of A ∩ B.
Toss a fair coin twice. Let A be the event "At least one Head" and B...
Toss a fair coin twice. Let A be the event "At least one Head" and B be the event "At least one Tail". Which of the following is true? A A and B are independent B A and B are disjoint C The probability of their intersection is P(A)P(B) D P(A/B)=P(B/A)
Suppose that we have a box that contains two coins: A fair coin: ?(?)=?(?)=0.5 . A...
Suppose that we have a box that contains two coins: A fair coin: ?(?)=?(?)=0.5 . A two-headed coin: ?(?)=1 . A coin is chosen at random from the box, i.e. either coin is chosen with probability 1/2 , and tossed twice. Conditioned on the identity of the coin, the two tosses are independent. Define the following events: Event ? : first coin toss is ? . Event ? : second coin toss is ? . Event ? : two coin...
Suppose that we have a box that contains two coins: A fair coin: ?(?)=?(?)=0.5 . A...
Suppose that we have a box that contains two coins: A fair coin: ?(?)=?(?)=0.5 . A two-headed coin: ?(?)=1 . A coin is chosen at random from the box, i.e. either coin is chosen with probability 1/2 , and tossed twice. Conditioned on the identity of the coin, the two tosses are independent. Define the following events: Event ? : first coin toss is ? . Event ? : second coin toss is ? . Event ? : two coin...
Suppose you toss a fair coin three times. Which of the following events are independent? Give...
Suppose you toss a fair coin three times. Which of the following events are independent? Give mathematical justification for your answer.     A= {“heads on first toss”}; B= {“an odd number of heads”}. A= {“no tails in the first two tosses”}; B=     {“no heads in the second and third toss”}.
Suppose we toss a fair coin three times. Consider the events A: we toss three heads,...
Suppose we toss a fair coin three times. Consider the events A: we toss three heads, B: we toss at least one head, and C: we toss at least two tails. P(A) = 12.5 P(B) = .875 P(C) = .50 What is P(A ∩ B), P(A ∩ C) and P(B ∩ C)? If you can show steps, that'd be great. I'm not fully sure what the difference between ∩ and ∪ is (sorry I can't make the ∪ bigger).
Suppose we toss a fair coin twice. Let X = the number of heads, and Y...
Suppose we toss a fair coin twice. Let X = the number of heads, and Y = the number of tails. X and Y are clearly not independent. a. Show that X and Y are not independent. (Hint: Consider the events “X=2” and “Y=2”) b. Show that E(XY) is not equal to E(X)E(Y). (You’ll need to derive the pmf for XY in order to calculate E(XY). Write down the sample space! Think about what the support of XY is and...
A fair six-sided die is tossed twice. Consider the following events: 1. A : First toss...
A fair six-sided die is tossed twice. Consider the following events: 1. A : First toss yields an even number. 2. B : Second toss yields an odd number. 3. C : Sum of two outcomes is even. Find P(A), P(B), P(C), P(B ∩ C), P(C|B), P(C|A ∩ B) and P(B|C).
A coin when tossed has 60% chances to show head and 40% chances to show tail....
A coin when tossed has 60% chances to show head and 40% chances to show tail. The probability that it shows tail during first toss and head during second toss or head during first toss and tail during second toss is a. 0.24 b. 0.48 c. 0.72 d. 0.96
If we toss a fair coin and roll a fair die at the same time, then...
If we toss a fair coin and roll a fair die at the same time, then the probability of getting a 6 on the die and a head on the coin is: A) 1/4 B) 2/3 C) 1/3 D) 1/12