Question

A particular fruit's weights are normally distributed, with a mean of 299 grams and a standard deviation of 10 grams. The heaviest 3% of fruits weigh more than how many grams? Answer = (Give your answer to the nearest gram.)

Answer #1

Solution:

Given that,

mean = =299

standard deviation = = 10

Using standard normal table,

P( Z > z) = 3%

P(Z > z) = 0.03

1 - P( Z < z) = 0.03

P(Z < z) = 1 - 0.03

P(Z < z) = 0.97

z = 1.88

Using z-score formula,

x = z * +

x = 1.88 * 10 + 299

x = 317.8

The heaviest 3% of fruits weigh more than 318 grams

A particular fruit's weights are normally distributed, with a
mean of 204 grams and a standard deviation of 5 grams. The heaviest
16% of fruits weigh more than how many grams? Give your answer to
the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 760 grams and a standard deviation of 39 grams. The
heaviest 8% of fruits weigh more than how many grams? Give your
answer to the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 300 grams and a standard deviation of 7 grams.
The heaviest 15% of fruits weigh more than how many grams?
Give your answer to the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 273 grams and a standard deviation of 17 grams. The
heaviest 4% of fruits weigh more than how many grams? Give your
answer to the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 691 grams and a standard deviation of 29 grams.
The heaviest 7% of fruits weigh more than how many grams?
Give your answer to the nearest gram

A particular fruit's weights are normally distributed, with a
mean of 740 grams and a standard deviation of 19 grams.
The heaviest 4% of fruits weigh more than how many
grams?
Give your answer to the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 686 grams and a standard deviation of 24 grams.
The heaviest 18% of fruits weigh more than how many grams?
Give your answer to the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 741 grams and a standard deviation of 32 grams.
The heaviest 9% of fruits weigh more than how many grams?
Give your answer to the nearest gram.

A particular fruit's weights are normally distributed, with a
mean of 747 grams and a standard deviation of 5 grams.
The heaviest 8% of fruits weigh more than how many grams?
Give your answer to the nearest gram..

A) A particular fruit's weights are normally
distributed, with a mean of 483 grams and a standard deviation of
21 grams.
If you pick one fruit at random, what is the probability that it
will weigh between 479 grams and 485 grams?
B) A particular fruit's weights are normally
distributed, with a mean of 478 grams and a standard deviation of
28 grams.
The heaviest 6% of fruits weigh more than how many grams? Give your
answer to the nearest...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 26 minutes ago

asked 30 minutes ago

asked 40 minutes ago

asked 43 minutes ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago