Question

Assuming that the population is normally distributed, construct a 95% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range.

Sample A: 1 4 4 4 5 5 5 8

Sample B: 1 2 3 4 5 6 7 8

a. Construct a 95% confidence interval for the population mean for sample A.

b. Construct a 95% confidence interval for the population mean for sample B.

c. Explain why these two samples produce different confidence intervals even though they have the same mean and range.

Answer #1

Answer:-

From the above information

c.

Here we observed that range and mean of both samples are same but standard deviation of both the samples are different that is why these two samples produce different confidence interval because standard deviation measures spread of the data and here spread of both samples are different.Mean and sometimes range does not affect the spread of the data.

Assuming that the population is normally distributed, construct
a 95% confidence interval for the population mean for each of the
samples below. Explain why these two samples produce different
confidence intervals even though they have the same mean and
range.
Sample A: 1 3 3 4 5 6 6 8
Sample B: 1 2 3 4 5 6 7 8
Construct a 95% confidence interval for the population mean for
sample A.
Construct a 95% confidence interval for the population...

Assuming that the population is normally distributed, construct
a 99% confidence interval for the population mean for each of the
samples below. Explain why these two samples produce different
confidence intervals even though they have the same mean and
range.
Sample A: 1,3,3,3,6,6,6,8
Sample B: 1,2,3,4,5,6,7,8
Q1. Construct a 99% confidence interval for the population mean
for sample A.
____ <_ u <_ _____
Q2.
Construct a 99% confidence interval for the population mean for
sample B.
____ <_ u...

Assuming that the population is normally distributed, construct
a 95% confidence interval for the population mean for each of the
samples below.
Sample
A:
11
33
44
44
55
55
66
88
Full data set
Sample
B:
11
22
33
44
55
66
77
88
Construct a 95% confidence interval for the population mean for
sample A.
____ ≤ μ ≤ _____

Assuming that the population is normally distributed, construct
a 95% confidence interval for the population mean, based on the
following sample size of n=8.
1, 2, 3, 4, 5, 6, 7 and 16
In the given data, replace the value 16 with 8 and recalculate
the confidence interval. Using these results, describe the effect
of an outlier (that is, an extreme value) on the confidence
interval, in general.
Find a 95% confidence interval for the population mean, using
the formula...

Assuming that the population is normally distributed, construct
a 95 % confidence interval for the population mean, based on the
following sample size of n equals 5.n=5.
1,2,3,4 and 17
In the given data, replace the value 17 with 5 and recalculate
the confidence interval. Using these results, describe the effect
of an outlier (that is, an extreme value) on the confidence
interval, in general.
Find a 95 % confidence interval for the population mean, using
the formula or technology.

Assuming that the population is normally distributed, construct
a 90 % confidence interval for the population mean, based on the
following sample size of n equals 6. 1, 2, 3, 4 comma 5, and 30
In the given data, replace the value 30 with 6 and recalculate the
confidence interval. Using these results, describe the effect of
an outlier (that is, an extreme value) on the confidence
interval, in general. Find a 90 % confidence interval for the
population mean,...

Assuming that the population is normally distributed, construct
a 99 % confidence interval for the population mean, based on the
following sample size of n equals 5. 1, 2, 3, 4, and 26 In the
given data, replace the value 26 with 5 and recalculate the
confidence interval. Using these results, describe the effect of
an outlier (that is, an extreme value) on the confidence
interval, in general. Find a 99 % confidence interval for the
population mean, using the...

Assuming that the population is normally distributed, construct
a
99 %99%
confidence interval for the population mean, based on the
following sample size of n equals 5.n=5.1, 2, 3,
44,
and
2020
In the given data, replace the value
2020
with
55
and recalculate the confidence interval. Using these results,
describe the effect of an outlier (that is, an extreme value) on
the confidence interval, in general.
Find a
99 %99%
confidence interval for the population mean, using the formula...

Assume the sample is taken from a normally distributed
population and construct the indicated confidence
interval.
Construct the indicated confidence intervals for the population
variance σ 2 and the population
standard deviation σ. Assume the sample is from a normally
distributed population
c = 0.99, s = 228.1 , n
= 61

Construct the indicated confidence interval for the population
mean of each data set. If it is possible to construct a confidence
interval, justify the distribution you used. If it is not possible,
explain why.
(a) In a random sample of 40 patients, the mean waiting time at
a dentist’s office was 20 minutes and the standard deviation was
7.5 minutes. Construct a 95% confidence interval for the population
mean.
(b) In a random sample of 20 people, the mean tip...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 24 minutes ago

asked 28 minutes ago

asked 29 minutes ago

asked 32 minutes ago

asked 35 minutes ago

asked 42 minutes ago

asked 43 minutes ago

asked 48 minutes ago

asked 48 minutes ago

asked 49 minutes ago

asked 58 minutes ago

asked 1 hour ago