The population proportion is 0.5. What is the probability that a sample proportion will be within +/- 0.05 of the population proportion for each of the following sample sizes? Round your answers to 4 decimal places. Use z-table.
a. | n=100 | |
b. | n=200 | |
c. | n=500 | |
d. | n=1,000 |
a)
here population proportion= μp= | 0.5000 |
sample size =n= | 100 |
std error of proportion=σp=√(p*(1-p)/n)= | 0.0500 |
probability =P(0.45<X<0.55)=P((0.45-0.5)/0.05)<Z<(0.55-0.5)/0.05)=P(-1<Z<1)=0.8413-0.1587=0.6826 |
b)
std error of proportion=σp=√(p*(1-p)/n)= | 0.0354 |
probability =P(0.45<X<0.55)=P((0.45-0.5)/0.035)<Z<(0.55-0.5)/0.035)=P(-1.41<Z<1.41)=0.9207-0.0793=0.8414 |
c)
std error of proportion=σp=√(p*(1-p)/n)= | 0.0224 |
probability =P(0.45<X<0.55)=P((0.45-0.5)/0.022)<Z<(0.55-0.5)/0.022)=P(-2.23<Z<2.23)=0.9871-0.0129=0.9742 |
d)
std error of proportion=σp=√(p*(1-p)/n)= | 0.0158 |
probability =P(0.45<X<0.55)=P((0.45-0.5)/0.016)<Z<(0.55-0.5)/0.016)=P(-3.16<Z<3.16)=0.9992-0.0008=0.9984 |
Get Answers For Free
Most questions answered within 1 hours.