Question

2. Let X be a continuous random variable with pdf given by f(x) = k 6x...

2. Let X be a continuous random variable with pdf given by f(x) = k 6x − x 2 − 8 2 ≤ x ≤ 4; 0 otherwise.

(a) Find k.

(b) Find P(2.4 < X < 3.1).

(c) Determine the cumulative distribution function.

(d) Find the expected value of X.

(e) Find the variance of X

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
Probability density function of the continuous random variable X is given by f(x) = ( ce...
Probability density function of the continuous random variable X is given by f(x) = ( ce −1 8 x for x ≥ 0 0 elsewhere (a) Determine the value of the constant c. (b) Find P(X ≤ 36). (c) Determine k such that P(X > k) = e −2 .
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0...
Let X and Y be continuous random variable with joint pdf f(x,y) = y/144 if 0 < 4x < y < 12 and 0 otherwise Find Cov (X,Y).
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ?...
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ? ≤ ? + 1, Where B is the last digit of your registration number (e.g. for FA18-BEE-123, B=3). a) Find the value of a b) Find cumulative distribution function (CDF) of X i.e. ?? (?). c) Find the mean of X d) Find variance of X.
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. Find...
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. Find the following values. 1. c= 2. P(X=1/2)= 3. P(X∈{1/k:k integer, k≥2})= 4. P(X≤1/2)=
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. c=...
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. c= P(X=1/2)= P(X∈{1/k:k integer, k≥2})= P(X≤1/2)=
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.