Using the data given in the table below, answer the following questions. (Round your final answers to 3 decimal places.) |
Order Size and Shipping Cost (n = 12) |
|
Orders (X) | Ship Cost (Y) |
1,077 | 4,489 |
1,031 | 5,537 |
796 | 3,205 |
867 | 4,147 |
1,139 | 4,734 |
1,106 | 5,496 |
828 | 4,428 |
997 | 5,591 |
745 | 3,321 |
683 | 3,527 |
1,182 | 6,527 |
1,038 | 5,174 |
(a) | Use Excel, MegaStat, or MINITAB to calculate the correlation coefficient. |
rcalc |
(b) | Use Excel or Appendix D to find t.025 for a two-tailed test at α=0.05α=0.05 . |
t.025t.025 ± |
(c) | Calculate the t test statistic. |
tcalc |
(d) | Should we reject the null hypothesis of zero correlation? |
|
The Excel output for regression analysis is:
Simple linear regression results:
Dependent Variable: Ship Cost (Y)
Independent Variable: Orders (X)
Ship Cost (Y) = -302.41019 + 5.2054071 Orders (X)
Sample size: 12
R (correlation coefficient) = 0.84271202
R-sq = 0.71016354
Estimate of error standard deviation: 580.4498
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | -302.41019 | 1020.6708 | ≠ 0 | 10 | -0.29628574 | 0.7731 |
Slope | 5.2054071 | 1.0516035 | ≠ 0 | 10 | 4.9499713 | 0.0006 |
Hence,
a) rcalc = 0.843
b) t0.025 = + 2.228
c) tcalc = 4.950
d) Yes
Get Answers For Free
Most questions answered within 1 hours.