Question

Year Month Return Year Month Return 2006     Jan 3.95 2008     Jul 3.29 2006     Feb 3.77 2008...

Year Month Return Year Month Return
2006     Jan 3.95 2008     Jul 3.29
2006     Feb 3.77 2008     Aug 4.62
2006     Mar 5.29 2008     Sep 4.81
2006     Apr 3.77 2008     Oct 5.16
2006     May 4.47 2008     Nov 3.69
2006     Jun 5.2 2008     Dec 5.15
2006     Jul 3.9 2009     Jan 5.29
2006     Aug 4.33 2009     Feb 3.19
2006     Sep 4.41 2009     Mar 3.89
2006     Oct 5.14 2009     Apr 4.48
2006     Nov 3.24 2009     May 5.27
2006     Dec 4.13 2009     Jun 3.93
2007     Jan 3.81 2009     Jul 4.67
2007     Feb 3.14 2009     Aug 5.23
2007     Mar 3.41 2009     Sep 5.06
2007     Apr 3.11 2009     Oct 5.39
2007     May 4.99 2009     Nov 4.41
2007     Jun 3.87 2009     Dec 3.91
2007     Jul 4.77 2010     Jan 3.44
2007     Aug 4.34 2010     Feb 4.77
2007     Sep 4.36 2010     Mar 3.62
2007     Oct 5.35 2010     Apr 4.9
2007     Nov 5.06 2010     May 3.68
2007     Dec 3.73 2010     Jun 4.81
2008     Jan 5.29 2010     Jul 4.36
2008     Feb 5.01 2010     Aug 3.84
2008     Mar 3.62 2010     Sep 4.82
2008     Apr 4.41 2010     Oct 3.56
2008     May 3.23 2010     Nov 4.8
2008     Jun 4.83 2010     Dec 4.62

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010 listed above.

Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round answers to 2 decimal places.)

Year Month y^t
2011 Jan
2011 Feb
2011 Mar

Homework Answers

Answer #1

Given the monthly data, first define some relevant variables for the regression. We define seasonal monthly variables along with time variables. Here, we display some few data of the table

Year Month Return M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
2006     Jan 3.95 1 0 0 0 0 0 0 0 0 0 0
2006     Feb 3.77 0 1 0 0 0 0 0 0 0 0 0
2006     Mar 5.29 0 0 1 0 0 0 0 0 0 0 0
2006     Apr 3.77 0 0 0 1 0 0 0 0 0 0 0
2006     May 4.47 0 0 0 0 1 0 0 0 0 0 0
2006     Jun 5.2 0 0 0 0 0 1 0 0 0 0 0

A linear trend model with seasonal dummy variables is

Using excel, we solve this data.

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.398215
R Square 0.158576
Adjusted R Square -0.05626
Standard Error 0.707313
Observations 60
ANOVA
df SS MS F Significance F
Regression 12 4.431408 0.369284 0.738138 0.707499
Residual 47 23.51369 0.500291
Total 59 27.9451
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 4.2075 0.370918 11.34348 4.7E-15 3.461309 4.953691
t 0.002792 0.005381 0.518829 0.606315 -0.00803 0.013616
M1 0.078708 0.451242 0.174426 0.86228 -0.82907 0.986491
M2 -0.30408 0.450568 -0.67489 0.503053 -1.21051 0.602343
M3 -0.31688 0.449957 -0.70423 0.484762 -1.22207 0.588322
M4 -0.15167 0.44941 -0.33748 0.737258 -1.05576 0.75243
M5 0.039542 0.448927 0.08808 0.930187 -0.86358 0.942666
M6 0.23675 0.448507 0.527862 0.600078 -0.66553 1.13903
M7 -0.09604 0.448152 -0.21431 0.831236 -0.99761 0.805524
M8 0.175167 0.447861 0.391118 0.697477 -0.72581 1.076147
M9 0.392375 0.447635 0.876551 0.385189 -0.50815 1.2929
M10 0.617583 0.447473 1.380157 0.174068 -0.28262 1.517783
M11 -0.06521 0.447376 -0.14576 0.884736 -0.96521 0.834796

Putting the estimated value of regression coefficient, we get the estimated linear trend model.

Based on the estimated model, we compute the forecast for next three months.

Year Month y
2011 Jan 4.4565
2011 Feb 4.0765
2011 Mar 4.0665
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 5.39 Feb-06 4.83 Mar-06 5.41 Apr-06 4.64 May-06 4.05 Jun-06 3.41 Jul-06 3.92 Aug-06 3.46 Sep-06 5.06 Oct-06 5.44 Nov-06 4.96 Dec-06 4.17 Jan-07 3.48 Feb-07 4.7 Mar-07 4.38 Apr-07 3.82 May-07 4.19 Jun-07 4.35 Jul-07 3.83 Aug-07 5.42 Sep-07 3.29 Oct-07 4 Nov-07 3.42 Dec-07 3.24 Jan-08 5.21 Feb-08 4.84 Mar-08 4.59 Apr-08 3.82 May-08 3.61 Jun-08 4.34 Jul-08 4.94 Aug-08...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 3.13 Feb-06 4.15 Mar-06 3.18 Apr-06 4.94 May-06 4.34 Jun-06 4.19 Jul-06 5.12 Aug-06 5.26 Sep-06 3.81 Oct-06 3.1 Nov-06 3.87 Dec-06 4.89 Jan-07 3.94 Feb-07 3.42 Mar-07 4.13 Apr-07 3.54 May-07 4.58 Jun-07 4.19 Jul-07 4.62 Aug-07 3.89 Sep-07 3.62 Oct-07 3.92 Nov-07 4.46 Dec-07 3.23 Jan-08 4.78 Feb-08 4.71 Mar-08 5.05 Apr-08 3.46 May-08 3.15 Jun-08 4.82 Jul-08 3.87 Aug-08...
FOR4. The Excel file Unemployment Rates provides data on monthly rates for 4 years. (8 pts)...
FOR4. The Excel file Unemployment Rates provides data on monthly rates for 4 years. (8 pts) a.         Develop 3- and 6-months moving average forecasts, and exponential smoothing forecasts (use alpha of your choice) b.         Using MAD as a criterion, explain which model yields better forecast? DATA: Unemployment Rates Year Month Rate (%) 2009 Jan 7.8 2009 Feb 8.3 2009 Mar 8.7 2009 Apr 9.0 2009 May 9.4 2009 Jun 9.5 2009 Jul 9.5 2009 Aug 9.6 2009 Sep...
Use the data below to answer this questions. Period Employment Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30...
Use the data below to answer this questions. Period Employment Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30 Apr-01 1,914.60 May-01 1,961.50 Jun-01 1,960.60 Jul-01 1,953.40 Aug-01 1,940.20 Sep-01 1,928.00 Oct-01 1,909.20 Nov-01 1,896.40 Dec-01 1,881.40 Jan-02 1,880.20 Feb-02 1,884.00 Mar-02 1,902.60 Apr-02 1,913.40 May-02 1,937.40 Jun-02 1,990.90 Jul-02 1,994.80 Aug-02 2,013.10 Sep-02 2,002.30 Oct-02 1,982.50 Nov-02 1,969.00 Dec-02 1,959.20 Jan-03 1,928.20 Feb-03 1,952.40 Mar-03 1,980.40 Apr-03 1,972.00 May-03 1,987.80 Jun-03 2,018.70 Jul-03 2,027.80 Aug-03 2,030.20 Sep-03 2,012.20 Oct-03 2,032.30 Nov-03 2,008.30...
Month Year Sales JAN 2014 372012 FEB 2014 377748 MAR 2014 382915 APR 2014 387140 MAY...
Month Year Sales JAN 2014 372012 FEB 2014 377748 MAR 2014 382915 APR 2014 387140 MAY 2014 388205 JUN 2014 390346 JUL 2014 391052 AUG 2014 394458 SEP 2014 394025 OCT 2014 396158 NOV 2014 398452 DEC 2014 399105 JAN 2015 400299 FEB 2015 398314 MAR 2015 404358 APR 2015 405678 MAY 2015 407867 JUN 2015 407959 JUL 2015 410540 AUG 2015 411860 SEP 2015 412791 OCT 2015 412002 NOV 2015 414260 DEC 2015 416186 Create a time series plot...
Given the following history, use a three-quarter moving average to forecast the demand for the third...
Given the following history, use a three-quarter moving average to forecast the demand for the third quarter of this year. Note, the 1st quarter is Jan, Feb, and Mar; 2nd quarter Apr, May, Jun; 3rd quarter Jul, Aug, Sep; and 4th quarter Oct, Nov, Dec. JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC     Last year 165 185 200 230 240 265 210 200 195 265 290 315   This year 175 200 165 260 260 200   Forecast...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices from December 12, 2008 to December 4, 2009?   4-Dec-09 585.01 27-Nov-09 579.76 20-Nov-09 569.96 13-Nov-09 572.05 20-Nov-09 551.1 30-Oct-09 536.12 23-Oct-09 553.69 16-Oct-09 549.85 9-Oct-09 516.25 2-Oct-09 484.58 25-Sep-09 492.48 18-Sep-09 491.46 11-Sep-09 472.14 4-Sep-09 461.3 28-Aug-09 464.75 21-Aug-09 465.24 14-Aug-09 460 7-Aug-09 457.1 31-Jul-09 443.05 24-Jul-09 446.72 17-Jul-09 430.25 10-Jul-09 414.4 2-Jul-09 408.49 26-Jun-09 425.32 19-Jun-09 420.09 12-Jun-09 424.84 5-Jun-09 444.32 29-May-09 417.23...
Known data in 2005 in the following table. Month (t) Request in unit (Y) Jan 199...
Known data in 2005 in the following table. Month (t) Request in unit (Y) Jan 199 Feb 202 Mar 199 Apr 208 May 212 Jun 194 Jul 214 Aug 220 Sep 219 Oct 234 Nov 219 Dec 233 a. Determine the demand for 2007 b. Calculate the SSE (Sum of Squared Errors) and the SEE (Standard Error Estimated) c. Define Confidence Interval and Prediction Interval with t = 18 and degrees ?= 0.01
Use the data below to answer this questions. a.) Generate a scatter of the data b....
Use the data below to answer this questions. a.) Generate a scatter of the data b. ) Report the monthly averages (January for all years, February for all years etc.) c.) Is there seasonality? Is there a trend? d.) How can you forecast the value for March 2020? Generate that forecast. e.) (Not technical) This forecast will for sure be wrong. Why? Reference period Employment 3 Persons Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30 Apr-01 1,914.60 May-01 1,961.50 Jun-01 1,960.60 Jul-01...
A local bookstore recorded their revenue (in thousands) for the last 36 months starting in September,...
A local bookstore recorded their revenue (in thousands) for the last 36 months starting in September, as provided below. a. find the deseasonalized line of best fit b. use the additive model of seasonal forecasting to predict the revenue for each month of the next academic year c. use the multiplicative model of seasonal forecasting to predict the revenue for each month of the next academic year d. what is the predicted total profit for the academic year for each...