Year | Month | Return | Year | Month | Return |
2006 | Jan | 3.95 | 2008 | Jul | 3.29 |
2006 | Feb | 3.77 | 2008 | Aug | 4.62 |
2006 | Mar | 5.29 | 2008 | Sep | 4.81 |
2006 | Apr | 3.77 | 2008 | Oct | 5.16 |
2006 | May | 4.47 | 2008 | Nov | 3.69 |
2006 | Jun | 5.2 | 2008 | Dec | 5.15 |
2006 | Jul | 3.9 | 2009 | Jan | 5.29 |
2006 | Aug | 4.33 | 2009 | Feb | 3.19 |
2006 | Sep | 4.41 | 2009 | Mar | 3.89 |
2006 | Oct | 5.14 | 2009 | Apr | 4.48 |
2006 | Nov | 3.24 | 2009 | May | 5.27 |
2006 | Dec | 4.13 | 2009 | Jun | 3.93 |
2007 | Jan | 3.81 | 2009 | Jul | 4.67 |
2007 | Feb | 3.14 | 2009 | Aug | 5.23 |
2007 | Mar | 3.41 | 2009 | Sep | 5.06 |
2007 | Apr | 3.11 | 2009 | Oct | 5.39 |
2007 | May | 4.99 | 2009 | Nov | 4.41 |
2007 | Jun | 3.87 | 2009 | Dec | 3.91 |
2007 | Jul | 4.77 | 2010 | Jan | 3.44 |
2007 | Aug | 4.34 | 2010 | Feb | 4.77 |
2007 | Sep | 4.36 | 2010 | Mar | 3.62 |
2007 | Oct | 5.35 | 2010 | Apr | 4.9 |
2007 | Nov | 5.06 | 2010 | May | 3.68 |
2007 | Dec | 3.73 | 2010 | Jun | 4.81 |
2008 | Jan | 5.29 | 2010 | Jul | 4.36 |
2008 | Feb | 5.01 | 2010 | Aug | 3.84 |
2008 | Mar | 3.62 | 2010 | Sep | 4.82 |
2008 | Apr | 4.41 | 2010 | Oct | 3.56 |
2008 | May | 3.23 | 2010 | Nov | 4.8 |
2008 | Jun | 4.83 | 2010 | Dec | 4.62 |
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010 listed above.
Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round answers to 2 decimal places.)
Year | Month | y^t |
2011 | Jan | |
2011 | Feb | |
2011 | Mar |
Given the monthly data, first define some relevant variables for the regression. We define seasonal monthly variables along with time variables. Here, we display some few data of the table
Year | Month | Return | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
2006 | Jan | 3.95 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2006 | Feb | 3.77 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2006 | Mar | 5.29 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2006 | Apr | 3.77 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2006 | May | 4.47 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2006 | Jun | 5.2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
A linear trend model with seasonal dummy variables is
Using excel, we solve this data.
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.398215 | |||||
R Square | 0.158576 | |||||
Adjusted R Square | -0.05626 | |||||
Standard Error | 0.707313 | |||||
Observations | 60 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 12 | 4.431408 | 0.369284 | 0.738138 | 0.707499 | |
Residual | 47 | 23.51369 | 0.500291 | |||
Total | 59 | 27.9451 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 4.2075 | 0.370918 | 11.34348 | 4.7E-15 | 3.461309 | 4.953691 |
t | 0.002792 | 0.005381 | 0.518829 | 0.606315 | -0.00803 | 0.013616 |
M1 | 0.078708 | 0.451242 | 0.174426 | 0.86228 | -0.82907 | 0.986491 |
M2 | -0.30408 | 0.450568 | -0.67489 | 0.503053 | -1.21051 | 0.602343 |
M3 | -0.31688 | 0.449957 | -0.70423 | 0.484762 | -1.22207 | 0.588322 |
M4 | -0.15167 | 0.44941 | -0.33748 | 0.737258 | -1.05576 | 0.75243 |
M5 | 0.039542 | 0.448927 | 0.08808 | 0.930187 | -0.86358 | 0.942666 |
M6 | 0.23675 | 0.448507 | 0.527862 | 0.600078 | -0.66553 | 1.13903 |
M7 | -0.09604 | 0.448152 | -0.21431 | 0.831236 | -0.99761 | 0.805524 |
M8 | 0.175167 | 0.447861 | 0.391118 | 0.697477 | -0.72581 | 1.076147 |
M9 | 0.392375 | 0.447635 | 0.876551 | 0.385189 | -0.50815 | 1.2929 |
M10 | 0.617583 | 0.447473 | 1.380157 | 0.174068 | -0.28262 | 1.517783 |
M11 | -0.06521 | 0.447376 | -0.14576 | 0.884736 | -0.96521 | 0.834796 |
Putting the estimated value of regression coefficient, we get the estimated linear trend model.
Based on the estimated model, we compute the forecast for next three months.
Year | Month | y |
2011 | Jan | 4.4565 |
2011 | Feb | 4.0765 |
2011 | Mar | 4.0665 |
Get Answers For Free
Most questions answered within 1 hours.