Question

I roll a fair die until I get my first ace. Let X be the number...

I roll a fair die until I get my first ace. Let X be the number of rolls I need.

You roll a fair die until you get your first ace. Let Y be the number of rolls you need.

(a) Find P( X+Y = 8)

HINT: Suppose you and I roll the same die, with me going first. In how many ways can it happen that X+Y = 8, and what is the probability of each of those ways?

(b) Find P(X+Y >= 8)

(c) Find P(X = Y).

(d) Find P(X > Y+2).

HINT: What are the values of P(X >Y) and P(X > Y+2 | X>Y) ? Or, for a more grind-it-out solution, sum the probabilities of all (x,y) values for which the event X > Y+2 happens.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8 Roll a fair (standard) die until a 6 is obtained and let Y be the...
8 Roll a fair (standard) die until a 6 is obtained and let Y be the total number of rolls until a 6 is obtained. Also, let X the number of 1s obtained before a 6 is rolled. (a) Find E(Y). (b) Argue that E(X | Y = y) = 1/5 (y − 1). [Hint: The word “Binomial” should be in your answer.] (c) Find E(X).
You roll a pair of fair dice repeatedly. Let X denote the number of rolls until...
You roll a pair of fair dice repeatedly. Let X denote the number of rolls until you get two consecutive sums of 8(roll two 8 in a row). Find E[X]
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you...
a fair die was rolled repeatedly. a) Let X denote the number of rolls until you get at least 3 different results. Find E(X) without calculating the distribution of X. b) Let S denote the number of rolls until you get a repeated result. Find E(S).
A die is rolled six times. (a) Let X be the number the die obtained on...
A die is rolled six times. (a) Let X be the number the die obtained on the first roll. Find the mean and variance of X. (b) Let Y be the sum of the numbers obtained from the six rolls. Find the mean and the variance of Y
Consider an experiment where a fair die is rolled repeatedly until the first time a 3...
Consider an experiment where a fair die is rolled repeatedly until the first time a 3 is observed. i) What is the sample space for this experiment? What is the probability that the die turns up a 3 after i rolls? ii) What is the expected number of times we roll the die? iii) Let E be the event that the first time a 3 turns up is after an even number of rolls. What set of outcomes belong to...
Roll a die twice and let Y be the sum of the two rolls. Find the...
Roll a die twice and let Y be the sum of the two rolls. Find the joint pmf of (X, Y ) if X is (a) the number on the first roll (b) the smallest number
You roll a six-sided die repeatedly until you roll a one. Let X be the random...
You roll a six-sided die repeatedly until you roll a one. Let X be the random number of times you roll the dice. Find the following expectation: E[(1/2)^X]
You flip a fair coin. If the coin lands heads, you roll a fair six-sided die...
You flip a fair coin. If the coin lands heads, you roll a fair six-sided die 100 times. If the coin lands tails, you roll the die 101 times. Let X be 1 if the coin lands heads and 0 if the coin lands tails. Let Y be the total number of times that you roll a 6. Find P (X=1|Y =15) /P (X=0|Y =15) .
Roll a fair four-sided die twice. Let X be the sum of the two rolls, and...
Roll a fair four-sided die twice. Let X be the sum of the two rolls, and let Y be the larger of the two rolls (or the common value if a tie). a) Find E(X|Y = 4) b) Find the distribution of the random variable E(X|Y ) c) Find E(E(X|Y )). What does this represent? d) Find E(XY |Y = 4) e) Find the distribution of the random variable E(XY |Y ) f) Explain why E(XY |Y ) = Y...
Roll a fair 6-sided die repeatedly and letY1,Y2,...be the resulting numbers. Let Xn=|{Y1,Y2,...,Yn}|be the number of...
Roll a fair 6-sided die repeatedly and letY1,Y2,...be the resulting numbers. Let Xn=|{Y1,Y2,...,Yn}|be the number of values we have seen in the first n rolls for n≥1 and setX0= 0.Xn is a Markov chain.(a) Find its transition probability.(b) Let T= min{n:Xn= 6}be the number of trials we need to see all 6 numbers at least once. Find E[T]. Please explain how/why
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT