Question

1. Let D={0,1,2,3,4,5,6,7,8,9} be the set of digits. Let P(D) be the power set of D,...

1. Let D={0,1,2,3,4,5,6,7,8,9} be the set of digits. Let P(D) be the power set of D, i.e. the set of all subsets of D.
   a) How many elements are there in P(D)? Prove it!
   b) Which number is greater: the number of different subsets of D which contain the digit 7 or the number of different subsets of D which do not contain the digit 7? Explain why!
   c) Which number is greater: the number of different subsets of D which contain more than five digits from D (like {0,1,2,5,7,9} or D itself) or the number of different subsets of D which contain less than five digits from D (like {3,4,6,8} or ∅)? Explain why!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let D={0,1,2,3,4,5,6,7,8,9} be the set of digits. Let P(D) be the power set of D ,...
Let D={0,1,2,3,4,5,6,7,8,9} be the set of digits. Let P(D) be the power set of D , i.e. the set of all subsets of D . How many elements are there in P(D) ? Prove it! Which number is greater: the number of different subsets of D which contain the digit 7 or the number of different subsets of D which do not contain the digit 7? Explain why! Which number is greater: the number of different subsets of D which...
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
A subset of a power set. (a) Let X = {a, b, c, d}. What is...
A subset of a power set. (a) Let X = {a, b, c, d}. What is { A: A ∈ P(X) and |A| = 2 }? comment: Please give a clear explanation to what this set builder notation translate to? Because I've checked the answer for a) and it is A= {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}. I don't understand because the cardinality of A has to be 2 right? Meanwhile, the answer is basically saying there's 6 elements. So...
Answer the following brief question: (1) Given a set X the power set P(X) is ......
Answer the following brief question: (1) Given a set X the power set P(X) is ... (2) Let X, Y be two infinite sets. Suppose there exists an injective map f : X → Y but no surjective map X → Y . What can one say about the cardinalities card(X) and card(Y ) ? (3) How many subsets of cardinality 7 are there in a set of cardinality 10 ? (4) How many functions are there from X =...
Thus, A + (B + C) = (A + B) + C. If D is a...
Thus, A + (B + C) = (A + B) + C. If D is a set, then the power set of D is the set PD of all the subsets of D. That is, PD = {A: A ⊆ D} The operation + is to be regarded as an operation on PD. 1 Prove that there is an identity element with respect to the operation +, which is _________. 2 Prove every subset A of D has an inverse...
1) In a college, each student ID card is linked with a unique 5-digit pin from...
1) In a college, each student ID card is linked with a unique 5-digit pin from the set {0,1,2,3,4,5,6,7,8,9}. A) Find the number of ID cards possible. B) Find the number of ID cards possible if the 5-digit number is an odd number? C) Recalculate A&B if the digits are not allowed to be repeated. 2) A license plate has 3 letters followed by 4 digits. How many different license plate numbers can be formed if the letters cannot be...
Given a random permutation of the elements of the set {a,b,c,d,e}, let X equal the number...
Given a random permutation of the elements of the set {a,b,c,d,e}, let X equal the number of elements that are in their original position (as listed). The moment generating function is X is: M(t) = 44/120 + 45/120e^t + 20/120e^2t + 10/120e^3t+1/120e^5t Explain Why there is not (e^4t) term in the moment generating function of X ?
1. Let A ⊆ R and p ∈ R. We say that A is bounded away...
1. Let A ⊆ R and p ∈ R. We say that A is bounded away from p if there is some c ∈ R+ such that |x − p| ≥ c for all x ∈ A. Prove that A is bounded away from p if and only if p not equal to A and the set n { 1 / |x−p| : x ∈ A} is bounded. 2. (a) Let n ∈ natural number(N) , and suppose that k...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length made up of only 0s and 1s, and no other characters. E.g., 010100100001 is a finite binary string but 100ff101 is not because it contains characters other than 0, 1. a. Give an informal proof arguing why this set should be countable. Even though the language of your proof can be informal, it must clearly explain the reasons why you think the set should...
91. Let X be a RV with support set {0, 1, 2}, p(1) = 0.3, and...
91. Let X be a RV with support set {0, 1, 2}, p(1) = 0.3, and p(2) = 0.5. Calculate E[X]. Let X be a discrete RV. Define the expected value E[X] of X. Is E[X] constant or random? Why? 92. Suppose X is a RV with support {−1,0,1} where p(−1) = q and p(1) = p. What relationship must hold between p and q to ensure that E[X] = 0? 93. Let X be a discrete RV and a,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT