Question

Suppose you draw two cards from a standard 52-card deck, look at them, and then put...

Suppose you draw two cards from a standard 52-card deck, look at them, and then put them back and shuffle. If you repeat this 15 times, how many times do you expect to draw two cards of the same rank (i.e. Ace and Ace, King and King, etc)? Round to the nearest hundredth.

Homework Answers

Answer #1

we can see that nearly 1 time or once we can expect to have same rank cards

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You randomly shuffle a 52-card deck of cards. We will consider what happens as we draw...
You randomly shuffle a 52-card deck of cards. We will consider what happens as we draw 3 cards from the deck to form a sequence of cards (for a - c) or a set of cards (d). Answer each of the following questions, showing all relevant calculations. You should analyze these using tree diagrams, but no need to show the diagrams in your answer. (a) Suppose you draw three cards from the deck with replacement; what is the probability that...
From a deck of 52 cards, what is the probability that you draw a face card...
From a deck of 52 cards, what is the probability that you draw a face card (J,Q,K), an Ace or a black card? 2. If you flip a coin 5 times and 4 times you see a head, what is the probability that the next flip is a tail? 3. Using 2 eight-side dice, what is the probability that you roll the most common combined number? 4. What is the probability that you roll 2 consecutive green numbers (i.e., 0,00)...
You shuffle a standard deck of 52 playing cards and draw two cards. Let X be...
You shuffle a standard deck of 52 playing cards and draw two cards. Let X be the random variable denoting the number of diamonds in the two selected cards. Write the probability distribution of X. Recall that there are 13 diamonds in a deck of 52 cards, and that drawing the first and second card are dependent.
You shuffle a standard deck of 52 playing cards and draw two cards. Let X be...
You shuffle a standard deck of 52 playing cards and draw two cards. Let X be the random variable denoting the number of diamonds in the two selected cards. Write the probability distribution of X. Recall that there are 13 diamonds in a deck of 52 cards, and that drawing the first and second card are dependent.
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets,...
. Consider 5-card hands from a standard 52-card deck of cards (and consider hands as sets, so that the same cards in different orders are the same hand). In your answers to following questions you may use binomial coefficients and/or factorials. (Recall that there are 4 Aces, 4 Kings, and 4 Queens in the deck of cards) a) How many different 5-card hands are there? b) How many hands are there with no Aces? c) How many hands are there...
An experiment consists of selecting a card from a standard deck of 52 cards, noting whether...
An experiment consists of selecting a card from a standard deck of 52 cards, noting whether or not the card is an Face Card (Jack, Queen or King) and returning the card to the deck. This experiment is repeated 10 times. Let X be the random variable representing how many times out of the 10 you observe a Face Card. Suppose that you repeat the experiment 5070 times. Let Y be the random variable representing the number of Face Cards...
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards....
Probabilities with a deck of cards. There are 52 cards in a standard deck of cards. There are 4 suits (Clubs, Hearts, Diamonds, and Spades) and there are 13 cards in each suit. Clubs/Spades are black, Hearts/Diamonds are red. There are 12 face cards. Face cards are those with a Jack (J), King (K), or Queen (Q) on them. For this question, we will consider the Ace (A) card to be a number card (i.e., number 1). Then for each...
The following question involves a standard deck of 52 playing cards. In such a deck of...
The following question involves a standard deck of 52 playing cards. In such a deck of cards there are four suits of 13 cards each. The four suits are: hearts, diamonds, clubs, and spades. The 26 cards included in hearts and diamonds are red. The 26 cards included in clubs and spades are black. The 13 cards in each suit are: 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, and Ace. This means there are four...
Consider a standard 52-card deck. If you draw 25% cards from the deck without replacement. What...
Consider a standard 52-card deck. If you draw 25% cards from the deck without replacement. What is the probability that your hand will contain one ace? What is the probability that your hand will contain no ace?
Suppose that we draw two cards from a standard deck of 52 playing cards, where ace,...
Suppose that we draw two cards from a standard deck of 52 playing cards, where ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen and king each appear four times (once in each suit). Suppose that it is equally likely that we draw any card remaining in the deck. Let X be the value of the first card, where we count aces as 1, jacks as 11, queens as 12, and kings as 13. Let Y be...