Question

n1=12, s21=0.439, n2=19, s22=1.638, Ha: σ21<σ22, α=0.05 Step 1 of 2: Determine the critical value(s) of...

n1=12, s21=0.439, n2=19, s22=1.638, Ha: σ21<σ22, α=0.05

Step 1 of 2: Determine the critical value(s) of the test statistic. If the test is two-tailed, separate the values with a comma. Round your answer(s) to four decimal places.

Step 2 of 2:

Make a decision.

Reject Null Hypothesis or Fail to Reject Null Hypothesis

Homework Answers

Answer #1

Hypothesis : VS

Since , the test is one tailed ( left ) test.

The test statistic is ,

;

The critical value is ,

; From excel "=FINV(0.95,11,18)"

Decision : Here , the value of the test statistic lies in the rejection region.

Therefore , Reject the null hypothesis.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following information: n1=21 , s21=65.396, n2=16, s22=50.452, Ha: σ21≠σ22, α=0.05 Step 1 of 2...
Given the following information: n1=21 , s21=65.396, n2=16, s22=50.452, Ha: σ21≠σ22, α=0.05 Step 1 of 2 : Determine the critical value(s) of the test statistic. If the test is two-tailed, separate the values with a comma. Round your answer(s) to four decimal places. step 2 of 2: Make a decision. A. reject null hypothesis B. Fail to reject null hypothesis
Given the following information: n1=61, s21=3.496, n2=61, s22=6.05, Ha: σ21≠σ22, α=0.1 Step 1 of 2 :  ...
Given the following information: n1=61, s21=3.496, n2=61, s22=6.05, Ha: σ21≠σ22, α=0.1 Step 1 of 2 :   Determine the critical value(s) of the test statistic. If the test is two-tailed, separate the values with a comma. Round your answer(s) to four decimal places. Step 2: Reject null hypothesis or fail to reject null hypothesis
Consider testing H0: σ21 ≤ σ22 vs. Ha: σ21 > σ22 given that ?1 = 25,...
Consider testing H0: σ21 ≤ σ22 vs. Ha: σ21 > σ22 given that ?1 = 25, s21  = 7.4, ?2 = 31, s22 = 6.2. a) Calculate the value of the test statistic, F*. b) Test the hypothesis at the 0.025 level of significance, using the classical approach. Critical region: c) Decision: d) Reason:
Consider the following hypothesis test. H0: σ12 = σ22 Ha: σ12 ≠ σ22 (a) What is...
Consider the following hypothesis test. H0: σ12 = σ22 Ha: σ12 ≠ σ22 (a) What is your conclusion if n1 = 21, s12 = 8.2, n2 = 26,  and s22 = 4.0? Use α = 0.05 and the p-value approach Find the value of the test statistic. Find the p-value. (Round your answer to four decimal places.) p-value = State your conclusion. Reject H0. We cannot conclude that σ12 ≠ σ22. Do not reject H0. We cannot conclude that σ12 ≠...
Consider the following hypothesis test. H0: σ12 = σ22 Ha: σ12 ≠ σ22 (a) What is...
Consider the following hypothesis test. H0: σ12 = σ22 Ha: σ12 ≠ σ22 (a) What is your conclusion if n1 = 21, s12 = 2.2, n2 = 26, and s22 = 1.0? Use α = 0.05 and the p-value approach. Find the value of the test statistic. Find the p-value. (Round your answer to four decimal places.) p-value = State your conclusion. Reject H0. We cannot conclude that σ12 ≠ σ22.Do not reject H0. We cannot conclude that σ12 ≠...
Consider the following competing hypotheses and relevant summary statistics: Use Table 4. H0: σ21/σ22σ12/σ22 ≥ 1...
Consider the following competing hypotheses and relevant summary statistics: Use Table 4. H0: σ21/σ22σ12/σ22 ≥ 1 HA: σ21/σ22σ12/σ22 < 1 Sample 1: s21s12 = 1,370, and n1 = 23 Sample 2: s22s22 = 1,441, and n2 = 15 a. Calculate the value of the test statistic. Remember to put the larger value for sample variance in the numerator. (Round your answer to 2 decimal places.)   Test statistic    b-1. Approximate the critical value at the 10% significance level.    2.05...
(a) Write the claim mathematically and identify H0 and Ha. ​(b) Find the critical​ value(s) and...
(a) Write the claim mathematically and identify H0 and Ha. ​(b) Find the critical​ value(s) and identify the rejection​ region(s). (c) Find the standardized test statistic.​ (d) Decide whether to reject or fail to reject the null hypothesis. In a sample of 1797 home​ buyers, you find that 785 home buyers found their real estate agent through a friend. At α=0.06​, can you reject the claim that 43​% of home buyers find their real estate agent through a​ friend? ​(a)...
Given two independent random samples with the following results: n1=573, p^1=0.5  n2=454, pˆ2=0.6 Can it be...
Given two independent random samples with the following results: n1=573, p^1=0.5  n2=454, pˆ2=0.6 Can it be concluded that the proportion found in Population 2 exceeds the proportion found in Population 1?  Use a significance level of α=0.1α=0.1for the test. Step 1 of 5: State the null and alternative hypotheses for the test. Step 2 of 5: Compute the weighted estimate of p, p‾p‾. Round your answer to three decimal places. Step 3 of 5: Compute the value of the test statistic....
Given two independent random samples with the following results: n1=469 x1=250 n2=242 x2=95 Can it be...
Given two independent random samples with the following results: n1=469 x1=250 n2=242 x2=95 Can it be concluded that there is a difference between the two population proportions? Use a significance level of α=0.05 for the test. Step 1 of 6: State the null and alternative hypotheses for the test. Step 2 of 6: Find the values of the two sample proportions, pˆ1p^1 and pˆ2p^2. Round your answers to three decimal places. Step 3 of 6: Compute the weighted estimate of...
Given two independent random samples with the following results: n1=305 x1=127  n2=194 x2=124 Can it be...
Given two independent random samples with the following results: n1=305 x1=127  n2=194 x2=124 Can it be concluded that there is a difference between the two population proportions? Use a significance level of α=0.05α=0.05 for the test. Step 1 of 6: State the null and alternative hypotheses for the test. Step 2 of 6: Find the values of the two sample proportions, pˆ1p^1 and pˆ2p^2. Round your answers to three decimal places Step 3 of 6: Compute the weighted estimate of...