Question

joint pdf of Bivariate random vector(X,Y) is f(x,y) = k(x^2+y^2) I(0,1)(x)I(0,1)(y). what is P[X-Y>0,X+Y>1] ?

joint pdf of Bivariate random vector(X,Y) is f(x,y) = k(x^2+y^2) I(0,1)(x)I(0,1)(y).

what is P[X-Y>0,X+Y>1] ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b) Find the joint cumulative density function of (X,Y) c) Find the marginal pdf of X and Y. d) Find Pr[Y<X2] and Pr[X+Y>0.5]
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Let X and Y have the joint pdf f(x,y) = 6*(x^2)*y for 0 <= x <=...
Let X and Y have the joint pdf f(x,y) = 6*(x^2)*y for 0 <= x <= y and x + y <= 2. What is the marginal pdf of X and Y? What is P(Y < 1.1 | X = 0.6)? Are X and Y dependent random variables?
Suppose X and Y are jointed distributed random variables with joint pdf f(x,y) given by f(x,y)...
Suppose X and Y are jointed distributed random variables with joint pdf f(x,y) given by f(x,y) = 8xy 0<y<x<1 = 0 elsewhere What is P(0<X<1/2 , 1/4<Y<1/2)
Let X and Y be random variables with joint pdf f(x, y) = 2 + x...
Let X and Y be random variables with joint pdf f(x, y) = 2 + x − y, for 0 <= x <= 1, 1 <= y <= 2. (a) Find the probability that min(X, Y ) <= 1/2. (b) Find the probability that X + √ Y >= 4/3.
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y for 0 ≤ y ≤ 1 and 1 ≤ x ≤ 2. If U = XY and V = X/Y , calculate the joint pdf of U and V , fUV (u, v).
Let (X, Y) be a random vector (or a random variable) with joint density f (X,...
Let (X, Y) be a random vector (or a random variable) with joint density f (X, Y) (x, y) = 3 (x + y)1(0,1) (x + y)1(0,1) (x)1(0.1) (y), with 1 (0,1) = indicator function. a) Calculate the marginal density functions of X and Y, respectively. b) Calculate the conditional density functions of X given Y = y, and of Y given X = x. c) Are X and Y independent?
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1. 1. Are X and Y independent? Explain with a picture. 2. Find the marginal pdf fX(x). 3. Find P( Y < 1/8 | X = 1/2 )
Suppose the random variable (X, Y ) has a joint pdf for the form ?cxy 0≤x≤1,0≤y≤1...
Suppose the random variable (X, Y ) has a joint pdf for the form ?cxy 0≤x≤1,0≤y≤1 f(x,y) = . 0 elsewhere (a) (5 pts) Find c so that f is a valid distribution. (b) (6 pts) Find the marginal distribution, g(x) for X and the marginal distribution for Y , h(y). (c) (6 pts) Find P (X > Y ). (d) (6 pts) Find the pdf of X +Y. (e) (6 pts) Find P (Y < 1/2|X > 1/2). (f)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT