Question

Normal Distribution Calculate the entropy of a multidimensional Gaussian p(x) = N(µ, Σ)

Normal Distribution
Calculate the entropy of a multidimensional Gaussian p(x) = N(µ, Σ)

Homework Answers

Answer #1

THE NECESSARY WORKOUT HAS BEEN SHOWN ABOVE. IN CASE OF DOUBT, DO COMMENT BELOW. AND PLEASE LIKE.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X ∼ N (µ, σ^2). Prove that P (|X − µ| > kσ) does not...
Let X ∼ N (µ, σ^2). Prove that P (|X − µ| > kσ) does not depend on µ or σ. Please write your answer as clearly as you can, appreciate it!
If X ∼ N(µ, σ) then Y = e^X has a log(Y) that has a Normal...
If X ∼ N(µ, σ) then Y = e^X has a log(Y) that has a Normal distribution. 1. without calculating, explain if E(Y) is greater than, less than, or equal to e^u. 2. Calculate E(Y) 3. Find the pdf of Y and sketch a plot of it
Let the random variable X follow a normal distribution with µ = 18 and σ =...
Let the random variable X follow a normal distribution with µ = 18 and σ = 4. The probability is 0.99 that X is in the symmetric interval about the mean between two numbers, L and U (L is the smaller of the two numbers and U is the larger of the two numbers). Calculate L.
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ...
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ is unknown but σ is known. Consider the following hypothesis testing problem: H0 : µ = µ0 vs. Ha : µ > µ0 Prove that the decision rule is that we reject H0 if X¯ − µ0 σ/√ n > Z(1 − α), where α is the significant level, and show that this is equivalent to rejecting H0 if µ0 is less than the...
Let the random variable X follow a normal distribution with µ = 22 and σ =...
Let the random variable X follow a normal distribution with µ = 22 and σ = 4. The probability is 0.90 that Xis in the symmetric interval about the mean between two numbers, L and U (L is the smaller of the two numbers and U is the larger of the two numbers). Calculate U.
2. Let X be a Normal random variable with µ = 11 and σ 2 =...
2. Let X be a Normal random variable with µ = 11 and σ 2 = 49. You may refer to the tables at the end of our textbook. (a) Calculate P(X2 > 100). (b) Calculate the hazard rate function at 18, λ(18) and at 25, λ(25).
Using the normal distribution, calculate the following probabilities: a) P(X≤16|n=50, p=0.70) b) P(10≤X≤16|n=50, p=0.50)
Using the normal distribution, calculate the following probabilities: a) P(X≤16|n=50, p=0.70) b) P(10≤X≤16|n=50, p=0.50)
Let two independent random vectors x and z have Gaussian distributions: p(x) = N(x|µx,Σx), and p(z)...
Let two independent random vectors x and z have Gaussian distributions: p(x) = N(x|µx,Σx), and p(z) = N(z|µz,Σz). Now consider y = x + z. Use the results for Gaussian linear system to find the distribution p(y) for y. Hint. Consider p(x) and p(y|x). Please prove for it rather than directly giving the result.
Let X have the normal distribution N(µ; σ2) and let Y = eX (a)Find the range...
Let X have the normal distribution N(µ; σ2) and let Y = eX (a)Find the range of Y and the pdf g(y) of Y (b)Find the third moment of Y E[Y3] (c) In the next four subquestions, we assume that µ = 0 and σ = 1. Sketch the graph of the pdf of Y for 0<y<=5 (use Maple to generate the graph and copy it the best you can in the answer box) (d)What is the mean of Y...
A distribution with a mean of µ = 73 and a standard deviation of σ =...
A distribution with a mean of µ = 73 and a standard deviation of σ = 8 is being transformed into a standardized distribution of µ = 100 and σ = 16. Find the new, standardized score for each of the following values from the original population (plot each point on a graph): a. X = 80 b. X = 70 c. X = 65 d. X = 87
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT