Question

One of the important features of a camera is the battery life as measured by the...

One of the important features of a camera is the battery life as measured by the number of shots taken until the battery needs to be recharged. The data shown in the table below contain the battery life of 10 subcompact and 10 compact cameras. Complete parts​ (a) through​ (c).

Subcompact

Compact

48

29

38

30

41

63

51

56

56

57

50

26

40

55

56

26

31

39

41

63

a. Assuming that the population variances from both types of digital cameras are​ equal, is there evidence of a difference in the mean battery life between the two types of​ cameras? Use

α=0.02.

Do not reject or Reject H0. There is _____

▼sufficient, insufficient, evidence

that the means differ.

b. Determine the​ p-value in​ (a) and interpret its meaning.

​p-value= _____

​(Round to two decimal places as​ needed.)

Interpret the​ p-value. Choose the correct answer below.

A.The probability of obtaining a sample that yields a t test statistic farther away from 0 in either direction than the computed test statistic if there is no difference in the mean battery life between the two types of digital cameras.

B.The probability of obtaining a sample that yields a t test statistic farther away from 0 in the positive direction than the computed test statistic if there is no difference in the mean battery life between the two types of digital cameras.

C.The probability of obtaining a sample that yields a t test statistic farther away from 0 in the negative direction than the computed test statistic if there is no difference in the mean battery life between the two types of digital cameras.

c. What is meant by a​ “.05” level of significance​ ?

A.we have a​ 5% chance of not rejecting the null hypothesis when the null is false

B.we have a​ 5% chance of rejecting the null hypothesis when the null hypothesis is true

C.the lowest level of significance for which we do not reject the null is​ 5%

D. The probability of a Type II error is​ 5%

Homework Answers

Answer #1

a)

Subcompact Compact
sample mean x = 41.30 48.30
standard deviation s= 10.80 13.21
sample size n= 10 10
Pooled Variance Sp2=((n1-1)s21+(n2-1)*s22)/(n1+n2-2)= 145.567
Point estimate : x1-x2= -7.0000
std. error se =Sp*√(1/n1+1/n2)= 5.3957
test stat t =(x1-x2-Δo)/Se= -1.2970
p value : = 0.2110 from excel: tdist(1.297,18,2)

Do not reject Ho ; There is insufficient evidence that the means differ.

b)

p value =0.21

A.The probability of obtaining a sample that yields a t test statistic farther away from 0 in either direction than the computed test statistic if there is no difference in the mean battery life between the two types of digital cameras.

c)

B.we have a​ 5% chance of rejecting the null hypothesis when the null hypothesis is true

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One of the important features of a camera is the battery life as measured by the...
One of the important features of a camera is the battery life as measured by the number of shots taken until the battery needs to be recharged. The data shown in the table below contain the battery life of 10 subcompact and 10 compact cameras. Complete parts​ (a) through​ (c). Subcompact Compact 50 30 35 35 46 61 58 58 57 57 41 24 37 53 54 20 34 37 45 62 a. Assuming that the population variances from both...
One of the important features of a camera is the battery life as measured by the...
One of the important features of a camera is the battery life as measured by the number of shots taken until the battery needs to be recharged. The data shown in the table below contain the battery life of 10 subcompact and 10 compact cameras. Complete parts​ (a) through​ (c). Subcompact Compact 48 29 38 30 41 63 51 56 56 57 50 26 40 55 56 26 31 39 41 63 a. Assuming that the population variances from both...
One of the important features of a camera is the battery life as measured by the...
One of the important features of a camera is the battery life as measured by the number of shots taken until the battery needs to be recharged. The data shown in the table below contain the battery life of 10 subcompact and 10 compact cameras. Complete parts​ (a) through​ (c). Subcompact Compact 41 23 36 33 49 60 56 56 59 51 46 26 35 52 60 20 33 39 50 64 a. Assuming that the population variances from both...
An important feature of digital cameras is battery​ life, the number of shots that can be...
An important feature of digital cameras is battery​ life, the number of shots that can be taken before the battery needs to be recharged. The accompanying data contains battery life information for 2929 subcompact cameras and 1616 compact cameras. Complete parts​ (a) through​ (d) below. DATA: Subcompact Compact 298 395 314 451 287 452 278 263 250 352 197 242 335 332 240 219 27279 231 238 259 197 282 217 398 277 507 209 198 260 149 219 131...
Digital cameras have taken over the majority of the point-and-shoot camera market. One of the important...
Digital cameras have taken over the majority of the point-and-shoot camera market. One of the important features of a camera is the battery life, as measured by the number of shots taken until the battery needs to be recharged. A random sample of 29 sub-compact cameras (Population 1) yielded a mean of 127 shots between recharges, with a standard deviation of 5.5 shots. A random sample of 16 compact cameras (Population 2) yielded a mean of 115 shots between recharges,...
Digital cameras have taken over the majority of the point-and-shoot camera market. One of the important...
Digital cameras have taken over the majority of the point-and-shoot camera market. One of the important features of a camera is the battery life, as measured by the number of shots taken until the battery needs to be recharged. A random sample of 29 sub-compact cameras (Population 1) yielded a mean of 127 shots between recharges, with a standard deviation of 5.5 shots. A random sample of 16 compact cameras (Population 2) yielded a mean of 115 shots between recharges,...
Bank A and Bank B have each developed an improved process for serving customers. The waiting...
Bank A and Bank B have each developed an improved process for serving customers. The waiting period from the moment a customer enters until he or she reaches the counter needs to be shortened. A random sample of 10 customers is selected from each bank and the results​ (in minutes) are shown in the accompanying data table. Complete parts​ (a) through ​(d) Bank A   Bank B 2.92   3.86 2.84   4.17 3.22   4.94 3.45   5.54 3.64   5.02 4.98   6.31 4.58   6.37...
The life in hours of a battery is known to be approximately normally distributed with standard...
The life in hours of a battery is known to be approximately normally distributed with standard deviation σ = 1.5 hours. A random sample of 10 batteries has a mean life of ¯x = 50.5 hours. You want to test H0 : µ = 50 versus Ha : µ 6= 50. (a) Find the test statistic and P-value. (b) Can we reject the null hypothesis at the level α = 0.05? (c) Compute a two-sided 95% confidence interval for the...
A survey of business and IT executives found that 76​% of automotive​ executives, 66​% of financial...
A survey of business and IT executives found that 76​% of automotive​ executives, 66​% of financial services​ executives, 81​% of heath care​ executives, 57​% of retail​ & consumer​ executives, and 75​% of technology executives say their CEOs are active champions of using digital technology to achieve strategy. Suppose that the study was based on a sample size of 500 in each group. Complete parts​ (a) and​ (b). a. At the 0.05 level of​ significance, is there evidence of a difference...
A sample of 42 observations has a mean of 103 and a population standard deviation of...
A sample of 42 observations has a mean of 103 and a population standard deviation of 7. A second sample of 61 has a mean of 100 and a population standard deviation of 9. Conduct a z-test about a difference in sample means using a 0.04 significance level and the following hypotheses:   H0: μ1 - μ2 = 0   H1: μ1 - μ2 ≠ 0 a) What is the correct decision rule? Reject H0 in favour of H1 if the computed...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT