Question

Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find...

Let X1, ..., Xn be a sample from an exponential population with parameter λ.

(a) Find the maximum likelihood estimator for λ. (NOT PI FUNCTION)

(b) Is the estimator unbiased?

(c) Is the estimator consistent?

Homework Answers

Answer #1

PLEASE - - - - PLEASE KINDLY UP-VOTE. IT HELPS ME A LOT. THANK YOU IN ADVANCE.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ...
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ whose pdf is f(x|λ) = λ^(−1) exp(− x/λ), x > 0, λ > 0. (a) With X(1) = min{X1, . . . , Xn}, find an unbiased estimator of λ, denoted it by λ(hat). (b) Use Lehmann-Shceffee to show that ∑ Xi/n is the UMVUE of λ. (c) By the definition of completeness of ∑ Xi or other tool(s), show that E(λ(hat) |  ∑ Xi)...
Let X1, ..., Xn be a random sample of an Exponential population with parameter p. That...
Let X1, ..., Xn be a random sample of an Exponential population with parameter p. That is, f(x|p) = pe-px , x > 0 Suppose we put a Gamma (c, d) prior on p. Find the Bayes estimator of p if we use the loss function L(p, a) = (p - a)2.
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x)...
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x) = theta(1-x)^(theta-1), where 0<x<1, where theta is a positive unknown parameter a) Find the method of moments estimator of theta b) Find the maximum likelihood estimator of theta c) Show that the log likelihood function is maximized at theta(hat)
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a...
Suppose that X is Poisson, with unknown mean λ, and let X1, ..., Xn be a random sample from X. a. Find the CRLB for the variance of estimators based on X1, ..., Xn. ̂̅̂ b. Verify that ? = X is an unbiased estimator for λ, and then show that ? is an efficient estimator for λ.
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean β. (1) Find the maximum likelihood estimator of β. (2) Determine whether the maximum likelihood estimator is unbiased for β. (3) Find the mean squared error of the maximum likelihood estimator of β. (4) Find the Cramer-Rao lower bound for the variances of unbiased estimators of β. (5) What is the UMVUE (uniformly minimum variance unbiased estimator) of β? What is your reason? (6)...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/(xlnθ) , 1 < x < θ. a) Obtain the maximum likelihood estimator of θ, ˆθ. b) Is ˆθ a consistent estimator of θ? Justify your answer.
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X¯ be the sample mean of a random sample X1, . . . , Xn...
Let X¯ be the sample mean of a random sample X1, . . . , Xn from the exponential distribution, Exp(θ), with density function f(x) = (1/θ) exp{−x/θ}, x > 0. Show that X¯ is an unbiased point estimator of θ.
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...