1) Find the following probabilities:
a) Pr{Z < 0.63}
b)Pr{Z ≥ −0.63}
c) Pr{−2.12 < Z < 2.12}
d) Pr{−2.12 < Z < 0.0}
e) Pr{−4.00 < Z < 0.0}
f) Pr{Z < −1.32 or Z > 1.32} (you want the probability that Z
is outside the range −1.32 to 1.32)
g) Pr{−1.32 < Z < 1.32} h) Add (f) and (g). Are you surprised? Why or why not?
a)
P(z < 0.63) = 0.7357
b)
P(Z >= -0.63) = P(Z < 0.63)
= 0.7357
c)
P(-2.12 < Z < 2.12) = P(Z < 2.12) - P(Z < -2.12)
= 0.9830 - 0.0170
= 0.9660
d)
P( -2.12 < Z < 0) = P(Z < 0) - P(Z < -2.12)
= 0.5 - 0.0170
= 0.4830
e)
P(-4 < Z < 0) = P(Z < 0) - P(Z < -4.00)
= 0.5 - 0
= 0.5
f)
P(Z < -1.32 OR Z > 1.32) = 1 - P( -1.32 < Z < 1.32)
= 1 - [ P(Z < 1.32) - P(Z < -1.32) ]
= 1 - [ 0.9066 - 0.0934 ]
= 0.1868
g)
P( -1.32 < Z < 1.32) = P(Z < 1.32) - P(Z < -1.32)
= 0.9066 - 0.0934
= 0.8132
h)
f + g = 0.1868 + 0.8132
= 1
yes, Since total area between z-score of -1.32 and z-score of 1.32 and outside of -1.32 and 1.32 is
whole area of the curve.
It should be 1.
Get Answers For Free
Most questions answered within 1 hours.