One hundred draws will be made at random with replacement from the box with the following numbers: 1 6 7 9 9 10 What is the expected value of a sum of 100 draws from this box?
Using the same box of numbers described above, what is the standard error of a sum of 100 draws from this box?
Using the same box of numbers described above, what is the chance of getting a sum between 650 and 750?
E(Xi) = 1/6 ( 1+ 6 +7 + 9 + 9 +10) = 7
x | p | px | px^2 |
1 | 0.166666667 | 0.166666667 | 0.166667 |
6 | 0.166666667 | 1 | 6 |
7 | 0.166666667 | 1.166666667 | 8.166667 |
9 | 0.333333333 | 3 | 27 |
10 | 0.166666667 | 1.666666667 | 16.66667 |
1 | 7 | 58 | |
Var(Xi) = E(X^2) - E(X) ^2
= 58 - 7^2 = 58 -49 = 9
What is the expected value of a sum of 100 draws from this box?
S = X1+X2+..X100
E(S) = 100 E(X) = 700
Using the same box of numbers described above, what is the standard error of a sum of 100 draws from this box?
Var(S) = 100 * 9 = 900
Using the same box of numbers described above, what is the chance of getting a sum between 650 and 750?
since n= 100 > 30
we can use central limit theorem
Z = (S - 700)/sqrt(900) = (S - 700)/30
P( 650 <S< 750)
= 0.9044
Get Answers For Free
Most questions answered within 1 hours.