Question

Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...

Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn.

(a) Give the pdf of Yn.

(b) Find the mean of Yn.

(c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c.

(d) Find the variance of cYn, wherec is the constant you determined in part (c).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
let X1,X2,..............,Xn be a r.s from N(θ,1). Find the best unbiased estimator for (θ)^2
let X1,X2,..............,Xn be a r.s from N(θ,1). Find the best unbiased estimator for (θ)^2
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/xlnθ , 1 < x < θ. c) Let Zn = nlnY1. Find the limiting distribution of Zn. d) Let Wn = nln( θ/Yn ). Find the limiting distribution of Wn.
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/(xlnθ) , 1 < x < θ. a) Obtain the maximum likelihood estimator of θ, ˆθ. b) Is ˆθ a consistent estimator of θ? Justify your answer.
Let X1, . . . , Xn and Y1, . . . , Yn be two...
Let X1, . . . , Xn and Y1, . . . , Yn be two random samples with the same mean µ and variance σ^2 . (The pdf of Xi and Yj are not specified.) Show that T = (1/2)Xbar + (1/2)Ybar is an unbiased estimator of µ. Evaluate MSE(T; µ)
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
Let X1, X2, ·······, Xn be a random sample from the Bernoulli distribution. Under the condition...
Let X1, X2, ·······, Xn be a random sample from the Bernoulli distribution. Under the condition 1/2≤Θ≤1, find a maximum-likelihood estimator of Θ.
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a...
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a distribution that is N(μ1, σ2 ) give ̄x = 4.8 and s 2+ 1 = 8.64 and a random sample, Y1, Y2, ..., Yn of size n = 10 from a distribution that is N(μ2, σ2 ) give y ̄ = 5.6 and s 2 2 = 7.88. Find a 95% confidence interval for μ1 − μ2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT