Question

Consider a random sample X1, X2, ⋯ Xn from the pdf fx;θ=.51+θx, -1≤x≤1;0, o.w., where (this...

  1. Consider a random sample X1, X2, ⋯ Xn from the pdf

fx;θ=.51+θx, -1≤x≤1;0, o.w., where (this distribution arises in particle physics).

  1. Find the method of moment estimator of θ.

  1. Compute the variance of your estimator. Hint: Compute the variance of X and then apply the formula for X, etc.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for θ > 2 and x > 1. (a) (10 points) Calculate EX1 and V ar(X1). (b) (5 points) Find the method of moments estimator of θ. (c) (5 points) If we denote the method of moments estimator as ˆθ1. What does √ n( ˆθ1 − θ) converge in distribution to? (d) (5 points) Is the method of moment estimator efficient? Verify your answer.
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/(xlnθ) , 1 < x < θ. a) Obtain the maximum likelihood estimator of θ, ˆθ. b) Is ˆθ a consistent estimator of θ? Justify your answer.
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. Calculate the probability of X1 < X2, i.e. P(X1 < X2, θ).
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn. (a) Give the pdf of Yn. (b) Find the mean of Yn. (c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c. (d) Find the variance of cYn,...
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 ) Calculate the probability of X1 < X2, i.e. P(X1 < X2, θ).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT
Active Questions
  • can you please show all the steps thank you... Prove by induction that 3n < 2n  for...
    asked 2 minutes ago
  • Daniel expects to receive $4,500 at the beginning of each month for the next 10 years...
    asked 7 minutes ago
  • Executive Pay: Make the Link One of the most important issues in organizations recently has been...
    asked 13 minutes ago
  • The following information relates to the first-year operations of David and Sharon partners. David and Sharon...
    asked 13 minutes ago
  • 1. A firm in any market structure will shut down production, producing zero output, if the...
    asked 14 minutes ago
  • Chapter 7.2 Question 14 The mean incubation time of fertilized eggs is 23 days. Suppose the...
    asked 22 minutes ago
  • If an enzyme reaction rate is approaching the Vmax, with a large excess of substrate present,...
    asked 29 minutes ago
  • During the TCP 3-way handshaking process, each side of the communication randomly generates a sequence number,...
    asked 29 minutes ago
  • While the adaptive expectations approach is valid, obtain the short-term and long-term total supply curves according...
    asked 31 minutes ago
  • Ang company that produces pleasure boats has decided to expand one of its lines. The company...
    asked 39 minutes ago
  • The treasurer of Kelly Bottling Company (a corporation) currently has $180,000 invested in preferred stock yielding...
    asked 40 minutes ago
  • Explain the difference between the “Personality” and the “Endorsement” ad execution styles in four sentences or...
    asked 41 minutes ago