Consider the following time series data.
Quarter | Year 1 | Year 2 | Year 3 |
1 | 2 | 5 | 7 |
2 | 0 | 2 | 6 |
3 | 5 | 8 | 10 |
4 | 5 | 8 | 10 |
(a) | Choose the correct time series plot. | ||||||||||||||||||||
|
|||||||||||||||||||||
Plot (iii)- Select your answer -Plot (i)Plot (ii)Plot (iii)Plot (iv)Item 1 | |||||||||||||||||||||
What type of pattern exists in the data? | |||||||||||||||||||||
Positive trend pattern, no seasonality- Select your answer -Positive trend pattern, no seasonalityHorizontal pattern, no seasonalityNegative trend pattern, no seasonalityPositive trend pattern, with seasonalityHorizontal pattern, with seasonalityItem 2 | |||||||||||||||||||||
(b) | Use a multiple regression model with dummy variables as follows to develop an equation to account for seasonal effects in the data. Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise. | ||||||||||||||||||||
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300) If the constant is "1" it must be entered in the box. Do not round intermediate calculation. | |||||||||||||||||||||
ŷ = + Qtr1 + Qtr2 + Qtr3 | |||||||||||||||||||||
(c) | Compute the quarterly forecasts for next year based on the model you developed in part (b). | ||||||||||||||||||||
If required, round your answers to three decimal places. Do not round intermediate calculation. | |||||||||||||||||||||
|
|||||||||||||||||||||
(d) | Use a multiple regression model to develop an equation to account for trend and seasonal effects in the data. Use the dummy variables you developed in part (b) to capture seasonal effects and create a variable t such that t = 1 for Quarter 1 in Year 1, t = 2 for Quarter 2 in Year 1,… t = 12 for Quarter 4 in Year 3. | ||||||||||||||||||||
If required, round your answers to three decimal places. For subtractive or negative numbers use a minus sign even if there is a + sign before the blank. (Example: -300) | |||||||||||||||||||||
ŷ = + Qtr1 + Qtr2 + Qtr3 + t | |||||||||||||||||||||
(e) | Compute the quarterly forecasts for next year based on the model you developed in part (d). | ||||||||||||||||||||
Do not round your interim computations and round your final answer to three decimal places. | |||||||||||||||||||||
|
|||||||||||||||||||||
(f) | Is the model you developed in part (b) or the model you developed in part (d) more effective? | ||||||||||||||||||||
If required, round your intermediate calculations and final answer to three decimal places. | |||||||||||||||||||||
|
|||||||||||||||||||||
- Select your answer -- Select your answer -Model developed in part (b)Model developed in part (d)Item 22 | |||||||||||||||||||||
Justify your answer. | |||||||||||||||||||||
The input in the box below will not be graded, but may be reviewed and considered by your instructor. | |||||||||||||||||||||
I just need help with b c d e f thank you! please show all work
Year | Ft | Q1 | Q2 | Q3 | t (period) |
1 | 2 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 2 |
1 | 5 | 0 | 0 | 1 | 3 |
1 | 5 | 0 | 0 | 0 | 4 |
2 | 5 | 1 | 0 | 0 | 5 |
2 | 2 | 0 | 1 | 0 | 6 |
2 | 8 | 0 | 0 | 1 | 7 |
2 | 8 | 0 | 0 | 0 | 8 |
3 | 7 | 1 | 0 | 0 | 9 |
3 | 6 | 0 | 1 | 0 | 10 |
3 | 10 | 0 | 0 | 1 | 11 |
3 | 10 | 0 | 0 | 0 | 12 |
b) Without t
Excel > Data > Data Analysis > Regression
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.698535473 | |||||||
R Square | 0.487951807 | |||||||
Adjusted R Square | 0.295933735 | |||||||
Standard Error | 2.661453237 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 3 | 54 | 18 | 2.541176471 | 0.129679966 | |||
Residual | 8 | 56.66666667 | 7.083333333 | |||||
Total | 11 | 110.6666667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 7.666666667 | 1.536590743 | 4.98940053 | 0.001066868 | 4.123282059 | 11.21005127 | 4.123282059 | 11.21005127 |
Q1 | -3 | 2.173067468 | -1.38053698 | 0.204763892 | -8.011102568 | 2.011102568 | -8.011102568 | 2.011102568 |
Q2 | -5 | 2.173067468 | -2.300894967 | 0.050400371 | -10.01110257 | 0.011102568 | -10.01110257 | 0.011102568 |
Q3 | 6.28037E-16 | 2.173067468 | 2.89009E-16 | 1 | -5.011102568 | 5.011102568 | -5.011102568 | 5.011102568 |
Y = 7.670-3.000*Q1-5.000*Q2+0.000*Q3
c)
Ft = 7.670-3.000*Q1-5.000*Q2+0.000*Q3
Quarter | Year | Ft | Q1 | Q2 | Q3 |
1 | 4 | 4.670 | 1 | 0 | 0 |
2 | 4 | 2.670 | 0 | 1 | 0 |
3 | 4 | 7.670 | 0 | 0 | 1 |
4 | 4 | 7.670 | 0 | 0 | 0 |
d) with t
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.99301021 | |||||||
R Square | 0.986069277 | |||||||
Adjusted R Square | 0.978108864 | |||||||
Standard Error | 0.469295318 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 4 | 109.125 | 27.28125 | 123.8716216 | 1.42033E-06 | |||
Residual | 7 | 1.541666667 | 0.220238095 | |||||
Total | 11 | 110.6666667 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 2.416666667 | 0.428406053 | 5.641065646 | 0.000781715 | 1.403647325 | 3.429686009 | 1.403647325 | 3.429686009 |
Q1 | -1.03125 | 0.402878254 | -2.559706285 | 0.037567703 | -1.983905691 | -0.078594309 | -1.983905691 | -0.078594309 |
Q2 | -3.6875 | 0.392055911 | -9.405546243 | 3.19973E-05 | -4.614564915 | -2.760435085 | -4.614564915 | -2.760435085 |
Q3 | 0.65625 | 0.385416667 | 1.702702703 | 0.132407607 | -0.255115597 | 1.567615597 | -0.255115597 | 1.567615597 |
t | 0.65625 | 0.041480238 | 15.82078687 | 9.77012E-07 | 0.558164824 | 0.754335176 | 0.558164824 | 0.754335176 |
Y = 2.417-1.031*Q1-3.688*Q2+0.656*Q3+0.656*t
e)
Ft = 2.417-1.031*Q1-3.688*Q2+0.656*Q3+0.656*t
Quarter | Year | Ft | Q1 | Q2 | Q3 | t |
1 | 4 | 9.918 | 1 | 0 | 0 | 13 |
2 | 4 | 7.918 | 0 | 1 | 0 | 14 |
3 | 4 | 12.918 | 0 | 0 | 1 | 15 |
4 | 4 | 12.918 | 0 | 0 | 0 | 16 |
f)
MSE from above output tables(MS Residuals)
Model developed in part (b) | Model developed in part (d) | |
MSE | 7.083 | 0.220 |
MSE in part b > MSE part d
So, part d model is effective
Get Answers For Free
Most questions answered within 1 hours.