Question

A random variable XX with distribution Exponential(λ)Exponential(λ) has the memory-less property, i.e., P(X>r+t|X>r)=P(X>t) for all r≥0...

A random variable XX with distribution Exponential(λ)Exponential(λ) has the memory-less property, i.e.,

P(X>r+t|X>r)=P(X>t) for all r≥0 and t≥0.P(X>r+t|X>r)=P(X>t) for all r≥0 and t≥0.

A postal clerk spends with his or her customer has an exponential distribution with a mean of 3 min3 min. Suppose a customer has spent 2.5 min2.5 min with a postal clerk. What is the probability that he or she will spend at least an additional 2 min2 min with the postal clerk?

Homework Answers

Answer #1

X: time spent by a postal clerk with customer.

given that ,

the pdf of the distribution is:-

the probability that he or she will spend at least an additional 2 min with the postal clerk be:-

[ using memory-less property]

*** if you have any doubt regarding the problem please write it in the comment box.if you are satisfied please give me a LIKE if possible..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be an exponential random variable with parameter λ > 0. Find the probabilities P(...
Let X be an exponential random variable with parameter λ > 0. Find the probabilities P( X > 2/ λ ) and P(| X − 1 /λ | < 2/ λ) .
Problem #3. X is a random variable with an exponential distribution with rate λ = 7...
Problem #3. X is a random variable with an exponential distribution with rate λ = 7 Thus the pdf of X is f(x) = λ e−λx for 0 ≤ x where λ = 7. a) Using the f(x) above and the R integrate function calculate the expected value of X. b) Using the f(x) above and the R integrate function calculate the expected value of X2 c) Using the dexp function and the R integrate command calculate the expected value...
X be random variable with distribution negative binomial NB(p,r) . r is known, 0<p<1 unknown. Find...
X be random variable with distribution negative binomial NB(p,r) . r is known, 0<p<1 unknown. Find the UMVUE of log (p)
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
Suppose that the random variable X has the following cumulative probability distribution X: 0 1. 2....
Suppose that the random variable X has the following cumulative probability distribution X: 0 1. 2. 3. 4 F(X): 0.1 0.29. 0.49. 0.8. 1.0 Part 1:  Find P open parentheses 1 less or equal than x less or equal than 2 close parentheses Part 2: Determine the density function f(x). Part 3: Find E(X). Part 4: Find Var(X). Part 5: Suppose Y = 2X - 3,  for all of X, determine E(Y) and Var(Y)
Part II Suppose the discrete random variable X has the following probability distribution. x -2 0...
Part II Suppose the discrete random variable X has the following probability distribution. x -2 0 2 4 6 P(X=x) 0.09 0.24 0.33 a 0.14 Find the value of a so that this probability distribution is valid. (Sec. 4.3) (Sec. 4.4) Find the mean of the random variable X in Exercise 1 above. Find the variance of the random variable X in Exercise 1 above. Consider the following table for the number of automobiles in Canada in 2005 by vehicle...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT