Question

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010.

Date Return
Jan-06 5.39
Feb-06 4.83
Mar-06 5.41
Apr-06 4.64
May-06 4.05
Jun-06 3.41
Jul-06 3.92
Aug-06 3.46
Sep-06 5.06
Oct-06 5.44
Nov-06 4.96
Dec-06 4.17
Jan-07 3.48
Feb-07 4.7
Mar-07 4.38
Apr-07 3.82
May-07 4.19
Jun-07 4.35
Jul-07 3.83
Aug-07 5.42
Sep-07 3.29
Oct-07 4
Nov-07 3.42
Dec-07 3.24
Jan-08 5.21
Feb-08 4.84
Mar-08 4.59
Apr-08 3.82
May-08 3.61
Jun-08 4.34
Jul-08 4.94
Aug-08 3.9
Sep-08 4.72
Oct-08 4.58
Nov-08 4.83
Dec-08 4.17
Jan-09 4.68
Feb-09 4.35
Mar-09 4.1
Apr-09 4.98
May-09 5.22
Jun-09 4.79
Jul-09 5
Aug-09 3.58
Sep-09 4.34
Oct-09 3.15
Nov-09 5.48
Dec-09 4.28
Jan-10 4.35
Feb-10 3.24
Mar-10 3.27
Apr-10 4.72
May-10 5
Jun-10 4.82
Jul-10 3.59
Aug-10 4.52
Sep-10 4.44
Oct-10 4.59
Nov-10 4.62
Dec-10 3.74

Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.)

Year Month yˆt
2011 Jan    
2011 Feb
2011 Mar

Homework Answers

Answer #1

Let's breakdown the periods into the corresponding year and months as follows (showing a part below):

Year Month Return
2006 1 5.39
2006 2 4.83
2006 3 5.41
2006 4 4.64
2006 5 4.05
2006 6 3.41
2006 7 3.92
2006 8 3.46
2006 9 5.06
2006 10 5.44
2006 11 4.96
2006 12 4.17

...............................................

Now, carrying out regression in Excel with Return as the response variable and Year, Month as predictor variables (go to Data tab -> Data Analysis -> Regression, and choose Return as Y-column and Year, Month as X-columns), we get the following output:

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.121061158
R Square 0.014655804
Adjusted R Square -0.019917677
Standard Error 0.656504176
Observations 60
ANOVA
df SS MS F Significance F
Regression 2 0.365402512 0.182701256 0.423903055 0.656533573
Residual 57 24.56687082 0.430997734
Total 59 24.93227333
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 35.45209091 120.340294 0.294598673 0.769370754 -205.5251913 276.4293731
Year -0.015416667 0.059930358 -0.257243027 0.797917543 -0.135425138 0.104591805
Month -0.021706294 0.024551864 -0.884099618 0.380356471 -0.070870554 0.027457966

Hence, the regression model obtained is: Return = 35.452 - 0.0154 * Year - 0.0217 * Month

Using this regression equation, the forecasts for the first 3 months of 2011 are:

Year Month Yt
2011 Jan 4.46
2011 Feb 4.44
2011 Mar 4.42
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Year Month Return Year Month Return 2006     Jan 3.95 2008     Jul 3.29 2006     Feb 3.77 2008...
Year Month Return Year Month Return 2006     Jan 3.95 2008     Jul 3.29 2006     Feb 3.77 2008     Aug 4.62 2006     Mar 5.29 2008     Sep 4.81 2006     Apr 3.77 2008     Oct 5.16 2006     May 4.47 2008     Nov 3.69 2006     Jun 5.2 2008     Dec 5.15 2006     Jul 3.9 2009     Jan 5.29 2006     Aug 4.33 2009     Feb 3.19 2006     Sep 4.41 2009     Mar 3.89 2006     Oct 5.14 2009     Apr 4.48 2006     Nov 3.24 2009     May 5.27 2006     Dec 4.13 2009     Jun 3.93 2007     Jan...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for two of Vanguard’s mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. a. Calculate the sample correlation coefficient rxy. b. Specify the competing hypotheses in order to determine whether the population correlation coefficient is different from zero. H0: ρxy ≥ 0; HA: ρxy < 0 H0: ρxy ≤ 0; HA: ρxy > 0 H0: ρxy = 0; HA: ρxy ≠ 0 c-1....
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices from December 12, 2008 to December 4, 2009?   4-Dec-09 585.01 27-Nov-09 579.76 20-Nov-09 569.96 13-Nov-09 572.05 20-Nov-09 551.1 30-Oct-09 536.12 23-Oct-09 553.69 16-Oct-09 549.85 9-Oct-09 516.25 2-Oct-09 484.58 25-Sep-09 492.48 18-Sep-09 491.46 11-Sep-09 472.14 4-Sep-09 461.3 28-Aug-09 464.75 21-Aug-09 465.24 14-Aug-09 460 7-Aug-09 457.1 31-Jul-09 443.05 24-Jul-09 446.72 17-Jul-09 430.25 10-Jul-09 414.4 2-Jul-09 408.49 26-Jun-09 425.32 19-Jun-09 420.09 12-Jun-09 424.84 5-Jun-09 444.32 29-May-09 417.23...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices from December 12, 2008 to December 4, 2009? Use the data set Google Closing Prices.xlsx (in section 11 of this module) to determine your answer. NOTE: The standard deviation function in Excel (for recent versions) has .p for a population and .s for a sample. we're treating everything as a sample! 4-Dec-09 585.01 27-Nov-09 579.76 20-Nov-09 569.96 13-Nov-09 572.05 6-Nov-09 551.1 30-Oct-09 536.12 23-Oct-09...
Use the data below to answer this questions. Period Employment Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30...
Use the data below to answer this questions. Period Employment Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30 Apr-01 1,914.60 May-01 1,961.50 Jun-01 1,960.60 Jul-01 1,953.40 Aug-01 1,940.20 Sep-01 1,928.00 Oct-01 1,909.20 Nov-01 1,896.40 Dec-01 1,881.40 Jan-02 1,880.20 Feb-02 1,884.00 Mar-02 1,902.60 Apr-02 1,913.40 May-02 1,937.40 Jun-02 1,990.90 Jul-02 1,994.80 Aug-02 2,013.10 Sep-02 2,002.30 Oct-02 1,982.50 Nov-02 1,969.00 Dec-02 1,959.20 Jan-03 1,928.20 Feb-03 1,952.40 Mar-03 1,980.40 Apr-03 1,972.00 May-03 1,987.80 Jun-03 2,018.70 Jul-03 2,027.80 Aug-03 2,030.20 Sep-03 2,012.20 Oct-03 2,032.30 Nov-03 2,008.30...
A local bookstore recorded their revenue (in thousands) for the last 36 months starting in September,...
A local bookstore recorded their revenue (in thousands) for the last 36 months starting in September, as provided below. a. find the deseasonalized line of best fit b. use the additive model of seasonal forecasting to predict the revenue for each month of the next academic year c. use the multiplicative model of seasonal forecasting to predict the revenue for each month of the next academic year d. what is the predicted total profit for the academic year for each...
The marketing department needs to forecast the number of complaints arising from a particular defect in...
The marketing department needs to forecast the number of complaints arising from a particular defect in a product. The data for several months is supplied below. Be careful since the data is listed beginning with the most recent. The forecasting method to be used here is exponential smoothing accounting for seasonality with a smoothing constant of 0.75 and a previous forecast (with seasonality) of 390. Please round your forecast to the nearest whole number. Jul 2020: 424 Jun 2020: 472...
Month Year Sales JAN 2014 372012 FEB 2014 377748 MAR 2014 382915 APR 2014 387140 MAY...
Month Year Sales JAN 2014 372012 FEB 2014 377748 MAR 2014 382915 APR 2014 387140 MAY 2014 388205 JUN 2014 390346 JUL 2014 391052 AUG 2014 394458 SEP 2014 394025 OCT 2014 396158 NOV 2014 398452 DEC 2014 399105 JAN 2015 400299 FEB 2015 398314 MAR 2015 404358 APR 2015 405678 MAY 2015 407867 JUN 2015 407959 JUL 2015 410540 AUG 2015 411860 SEP 2015 412791 OCT 2015 412002 NOV 2015 414260 DEC 2015 416186 Create a time series plot...
Trends and Regression Calculate the Linear Trend Line for the following data Using the Liner Trend...
Trends and Regression Calculate the Linear Trend Line for the following data Using the Liner Trend Line, what sales do you forecast for July 2016 (plot the values) Using the Linear Trend Line, what sales do you forecast for July 2017 (plot the values) Comment on the quality/reliability of your forecasts - what concerns should you have regarding the accuracy of your linear trend line forecast? Select an alternative Trend Line that you think best fits the historical data. Make...
Known data in 2005 in the following table. Month (t) Request in unit (Y) Jan 199...
Known data in 2005 in the following table. Month (t) Request in unit (Y) Jan 199 Feb 202 Mar 199 Apr 208 May 212 Jun 194 Jul 214 Aug 220 Sep 219 Oct 234 Nov 219 Dec 233 a. Determine the demand for 2007 b. Calculate the SSE (Sum of Squared Errors) and the SEE (Standard Error Estimated) c. Define Confidence Interval and Prediction Interval with t = 18 and degrees ?= 0.01