Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010.
Date | Return |
Jan-06 | 5.39 |
Feb-06 | 4.83 |
Mar-06 | 5.41 |
Apr-06 | 4.64 |
May-06 | 4.05 |
Jun-06 | 3.41 |
Jul-06 | 3.92 |
Aug-06 | 3.46 |
Sep-06 | 5.06 |
Oct-06 | 5.44 |
Nov-06 | 4.96 |
Dec-06 | 4.17 |
Jan-07 | 3.48 |
Feb-07 | 4.7 |
Mar-07 | 4.38 |
Apr-07 | 3.82 |
May-07 | 4.19 |
Jun-07 | 4.35 |
Jul-07 | 3.83 |
Aug-07 | 5.42 |
Sep-07 | 3.29 |
Oct-07 | 4 |
Nov-07 | 3.42 |
Dec-07 | 3.24 |
Jan-08 | 5.21 |
Feb-08 | 4.84 |
Mar-08 | 4.59 |
Apr-08 | 3.82 |
May-08 | 3.61 |
Jun-08 | 4.34 |
Jul-08 | 4.94 |
Aug-08 | 3.9 |
Sep-08 | 4.72 |
Oct-08 | 4.58 |
Nov-08 | 4.83 |
Dec-08 | 4.17 |
Jan-09 | 4.68 |
Feb-09 | 4.35 |
Mar-09 | 4.1 |
Apr-09 | 4.98 |
May-09 | 5.22 |
Jun-09 | 4.79 |
Jul-09 | 5 |
Aug-09 | 3.58 |
Sep-09 | 4.34 |
Oct-09 | 3.15 |
Nov-09 | 5.48 |
Dec-09 | 4.28 |
Jan-10 | 4.35 |
Feb-10 | 3.24 |
Mar-10 | 3.27 |
Apr-10 | 4.72 |
May-10 | 5 |
Jun-10 | 4.82 |
Jul-10 | 3.59 |
Aug-10 | 4.52 |
Sep-10 | 4.44 |
Oct-10 | 4.59 |
Nov-10 | 4.62 |
Dec-10 | 3.74 |
Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.)
Year | Month | yˆt |
2011 | Jan | |
2011 | Feb | |
2011 | Mar | |
Let's breakdown the periods into the corresponding year and months as follows (showing a part below):
Year | Month | Return |
2006 | 1 | 5.39 |
2006 | 2 | 4.83 |
2006 | 3 | 5.41 |
2006 | 4 | 4.64 |
2006 | 5 | 4.05 |
2006 | 6 | 3.41 |
2006 | 7 | 3.92 |
2006 | 8 | 3.46 |
2006 | 9 | 5.06 |
2006 | 10 | 5.44 |
2006 | 11 | 4.96 |
2006 | 12 | 4.17 |
...............................................
Now, carrying out regression in Excel with Return as the response variable and Year, Month as predictor variables (go to Data tab -> Data Analysis -> Regression, and choose Return as Y-column and Year, Month as X-columns), we get the following output:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.121061158 | |||||
R Square | 0.014655804 | |||||
Adjusted R Square | -0.019917677 | |||||
Standard Error | 0.656504176 | |||||
Observations | 60 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 0.365402512 | 0.182701256 | 0.423903055 | 0.656533573 | |
Residual | 57 | 24.56687082 | 0.430997734 | |||
Total | 59 | 24.93227333 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 35.45209091 | 120.340294 | 0.294598673 | 0.769370754 | -205.5251913 | 276.4293731 |
Year | -0.015416667 | 0.059930358 | -0.257243027 | 0.797917543 | -0.135425138 | 0.104591805 |
Month | -0.021706294 | 0.024551864 | -0.884099618 | 0.380356471 | -0.070870554 | 0.027457966 |
Hence, the regression model obtained is: Return = 35.452 - 0.0154 * Year - 0.0217 * Month
Using this regression equation, the forecasts for the first 3 months of 2011 are:
Year | Month | Yt |
2011 | Jan | 4.46 |
2011 | Feb | 4.44 |
2011 | Mar | 4.42 |
Get Answers For Free
Most questions answered within 1 hours.