Question

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...

Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010.

Date Return
Jan-06 5.39
Feb-06 4.83
Mar-06 5.41
Apr-06 4.64
May-06 4.05
Jun-06 3.41
Jul-06 3.92
Aug-06 3.46
Sep-06 5.06
Oct-06 5.44
Nov-06 4.96
Dec-06 4.17
Jan-07 3.48
Feb-07 4.7
Mar-07 4.38
Apr-07 3.82
May-07 4.19
Jun-07 4.35
Jul-07 3.83
Aug-07 5.42
Sep-07 3.29
Oct-07 4
Nov-07 3.42
Dec-07 3.24
Jan-08 5.21
Feb-08 4.84
Mar-08 4.59
Apr-08 3.82
May-08 3.61
Jun-08 4.34
Jul-08 4.94
Aug-08 3.9
Sep-08 4.72
Oct-08 4.58
Nov-08 4.83
Dec-08 4.17
Jan-09 4.68
Feb-09 4.35
Mar-09 4.1
Apr-09 4.98
May-09 5.22
Jun-09 4.79
Jul-09 5
Aug-09 3.58
Sep-09 4.34
Oct-09 3.15
Nov-09 5.48
Dec-09 4.28
Jan-10 4.35
Feb-10 3.24
Mar-10 3.27
Apr-10 4.72
May-10 5
Jun-10 4.82
Jul-10 3.59
Aug-10 4.52
Sep-10 4.44
Oct-10 4.59
Nov-10 4.62
Dec-10 3.74

Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.)

Year Month yˆt
2011 Jan    
2011 Feb
2011 Mar

Homework Answers

Answer #1

Let's breakdown the periods into the corresponding year and months as follows (showing a part below):

Year Month Return
2006 1 5.39
2006 2 4.83
2006 3 5.41
2006 4 4.64
2006 5 4.05
2006 6 3.41
2006 7 3.92
2006 8 3.46
2006 9 5.06
2006 10 5.44
2006 11 4.96
2006 12 4.17

...............................................

Now, carrying out regression in Excel with Return as the response variable and Year, Month as predictor variables (go to Data tab -> Data Analysis -> Regression, and choose Return as Y-column and Year, Month as X-columns), we get the following output:

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.121061158
R Square 0.014655804
Adjusted R Square -0.019917677
Standard Error 0.656504176
Observations 60
ANOVA
df SS MS F Significance F
Regression 2 0.365402512 0.182701256 0.423903055 0.656533573
Residual 57 24.56687082 0.430997734
Total 59 24.93227333
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 35.45209091 120.340294 0.294598673 0.769370754 -205.5251913 276.4293731
Year -0.015416667 0.059930358 -0.257243027 0.797917543 -0.135425138 0.104591805
Month -0.021706294 0.024551864 -0.884099618 0.380356471 -0.070870554 0.027457966

Hence, the regression model obtained is: Return = 35.452 - 0.0154 * Year - 0.0217 * Month

Using this regression equation, the forecasts for the first 3 months of 2011 are:

Year Month Yt
2011 Jan 4.46
2011 Feb 4.44
2011 Mar 4.42
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 3.13 Feb-06 4.15 Mar-06 3.18 Apr-06 4.94 May-06 4.34 Jun-06 4.19 Jul-06 5.12 Aug-06 5.26 Sep-06 3.81 Oct-06 3.1 Nov-06 3.87 Dec-06 4.89 Jan-07 3.94 Feb-07 3.42 Mar-07 4.13 Apr-07 3.54 May-07 4.58 Jun-07 4.19 Jul-07 4.62 Aug-07 3.89 Sep-07 3.62 Oct-07 3.92 Nov-07 4.46 Dec-07 3.23 Jan-08 4.78 Feb-08 4.71 Mar-08 5.05 Apr-08 3.46 May-08 3.15 Jun-08 4.82 Jul-08 3.87 Aug-08...
Year Month Return Year Month Return 2006     Jan 3.95 2008     Jul 3.29 2006     Feb 3.77 2008...
Year Month Return Year Month Return 2006     Jan 3.95 2008     Jul 3.29 2006     Feb 3.77 2008     Aug 4.62 2006     Mar 5.29 2008     Sep 4.81 2006     Apr 3.77 2008     Oct 5.16 2006     May 4.47 2008     Nov 3.69 2006     Jun 5.2 2008     Dec 5.15 2006     Jul 3.9 2009     Jan 5.29 2006     Aug 4.33 2009     Feb 3.19 2006     Sep 4.41 2009     Mar 3.89 2006     Oct 5.14 2009     Apr 4.48 2006     Nov 3.24 2009     May 5.27 2006     Dec 4.13 2009     Jun 3.93 2007     Jan...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for two of Vanguard’s mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. a. Calculate the sample correlation coefficient rxy. b. Specify the competing hypotheses in order to determine whether the population correlation coefficient is different from zero. H0: ρxy ≥ 0; HA: ρxy < 0 H0: ρxy ≤ 0; HA: ρxy > 0 H0: ρxy = 0; HA: ρxy ≠ 0 c-1....
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices from December 12, 2008 to December 4, 2009?   4-Dec-09 585.01 27-Nov-09 579.76 20-Nov-09 569.96 13-Nov-09 572.05 20-Nov-09 551.1 30-Oct-09 536.12 23-Oct-09 553.69 16-Oct-09 549.85 9-Oct-09 516.25 2-Oct-09 484.58 25-Sep-09 492.48 18-Sep-09 491.46 11-Sep-09 472.14 4-Sep-09 461.3 28-Aug-09 464.75 21-Aug-09 465.24 14-Aug-09 460 7-Aug-09 457.1 31-Jul-09 443.05 24-Jul-09 446.72 17-Jul-09 430.25 10-Jul-09 414.4 2-Jul-09 408.49 26-Jun-09 425.32 19-Jun-09 420.09 12-Jun-09 424.84 5-Jun-09 444.32 29-May-09 417.23...
FOR4. The Excel file Unemployment Rates provides data on monthly rates for 4 years. (8 pts)...
FOR4. The Excel file Unemployment Rates provides data on monthly rates for 4 years. (8 pts) a.         Develop 3- and 6-months moving average forecasts, and exponential smoothing forecasts (use alpha of your choice) b.         Using MAD as a criterion, explain which model yields better forecast? DATA: Unemployment Rates Year Month Rate (%) 2009 Jan 7.8 2009 Feb 8.3 2009 Mar 8.7 2009 Apr 9.0 2009 May 9.4 2009 Jun 9.5 2009 Jul 9.5 2009 Aug 9.6 2009 Sep...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices...
Rounded to the nearest whole number, what is the standard deviation for Google weekly closing prices from December 12, 2008 to December 4, 2009? Use the data set Google Closing Prices.xlsx (in section 11 of this module) to determine your answer. NOTE: The standard deviation function in Excel (for recent versions) has .p for a population and .s for a sample. we're treating everything as a sample! 4-Dec-09 585.01 27-Nov-09 579.76 20-Nov-09 569.96 13-Nov-09 572.05 6-Nov-09 551.1 30-Oct-09 536.12 23-Oct-09...
Use the data below to answer this questions. a.) Generate a scatter of the data b....
Use the data below to answer this questions. a.) Generate a scatter of the data b. ) Report the monthly averages (January for all years, February for all years etc.) c.) Is there seasonality? Is there a trend? d.) How can you forecast the value for March 2020? Generate that forecast. e.) (Not technical) This forecast will for sure be wrong. Why? Reference period Employment 3 Persons Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30 Apr-01 1,914.60 May-01 1,961.50 Jun-01 1,960.60 Jul-01...
Use the data below to answer this questions. Period Employment Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30...
Use the data below to answer this questions. Period Employment Jan-01 1,879.50 Feb-01 1,901.00 Mar-01 1,925.30 Apr-01 1,914.60 May-01 1,961.50 Jun-01 1,960.60 Jul-01 1,953.40 Aug-01 1,940.20 Sep-01 1,928.00 Oct-01 1,909.20 Nov-01 1,896.40 Dec-01 1,881.40 Jan-02 1,880.20 Feb-02 1,884.00 Mar-02 1,902.60 Apr-02 1,913.40 May-02 1,937.40 Jun-02 1,990.90 Jul-02 1,994.80 Aug-02 2,013.10 Sep-02 2,002.30 Oct-02 1,982.50 Nov-02 1,969.00 Dec-02 1,959.20 Jan-03 1,928.20 Feb-03 1,952.40 Mar-03 1,980.40 Apr-03 1,972.00 May-03 1,987.80 Jun-03 2,018.70 Jul-03 2,027.80 Aug-03 2,030.20 Sep-03 2,012.20 Oct-03 2,032.30 Nov-03 2,008.30...
Given the following history, use a three-quarter moving average to forecast the demand for the third...
Given the following history, use a three-quarter moving average to forecast the demand for the third quarter of this year. Note, the 1st quarter is Jan, Feb, and Mar; 2nd quarter Apr, May, Jun; 3rd quarter Jul, Aug, Sep; and 4th quarter Oct, Nov, Dec. JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC     Last year 165 185 200 230 240 265 210 200 195 265 290 315   This year 175 200 165 260 260 200   Forecast...
A local bookstore recorded their revenue (in thousands) for the last 36 months starting in September,...
A local bookstore recorded their revenue (in thousands) for the last 36 months starting in September, as provided below. a. find the deseasonalized line of best fit b. use the additive model of seasonal forecasting to predict the revenue for each month of the next academic year c. use the multiplicative model of seasonal forecasting to predict the revenue for each month of the next academic year d. what is the predicted total profit for the academic year for each...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT