Question

A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...

A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true.

P(A1) = 0.16      P(A2) = 0.10     P(A3) = 0.08
P(A1A2) = 0.18      P(A1A3) = 0.19
P(A2A3) = 0.14      P(A1A2A3) = 0.02

(a) What is the probability that the system does not have a type 1 defect?


(b) What is the probability that the system has both type 1 and type 2 defects?


(c) What is the probability that the system has both type 1 and type 2 defects but not a type 3 defect?


(d) What is the probability that the system has at most two of these defects?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true. P(A1) = 0.11 P(A2) = 0.06 P(A3) = 0.04 P(A1 ∪ A2) = 0.14 P(A1 ∪ A3) = 0.13 P(A2 ∪ A3) = 0.08 P(A1 ∩ A2 ∩ A3) = 0.01 (Round your answers to two decimal places.) (a) Given that the system has a type...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true. P(A1) = 0.11   P(A2) = 0.07   P(A3) = 0.05 P(A1 ∪ A2) = 0.15 P(A1 ∪ A3) = 0.14 P(A2 ∪ A3) = 0.1 P(A1 ∩ A2 ∩ A3) = 0.01 (Round your answers to two decimal places.) (a) Given that the system has a type...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that P(A1) = 0.25, P(A2) = 0.29, P(A3) = 0.33, P(A1 ∪ A2) = 0.5, P(A1 ∪ A3) = 0.53, P(A2 ∪ A3) = 0.54, P(A1 ∩ A2 ∩ A3) = 0.02 (a) Find the probability that the system has exactly 2 of the 3 types of defects. (b) Find the probability...
Part 1 The three most popular options on a certain type of new car are a...
Part 1 The three most popular options on a certain type of new car are a built-in GPS (A), a sunroof (B), and an automatic transmission (C). If 48% of all purchasers request A, 59% request B, 74% request C, 68% request A or B, 85% request A or C, 83% request B or C, and 90% request A or B or C, determine the probabilities of the following events. [Hint: "A or B" is the event that at least...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project i}, for i = 1, 2, 3, and suppose that P(A1) = 0.23, P(A2) = 0.25, P(A3) = 0.29, P(A1 ∩ A2) = 0.09,P(A1 ∩ A3) = 0.11, P(A2 ∩ A3) = 0.07, P(A1 ∩ A2 ∩ A3) = 0.02. Use the probabilities given above to compute the following probabilities. (Round your answers to four decimal places.) (a)   P(A2 | A1) = (b) P(A2 ∩...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project i}, for i = 1, 2, 3, and suppose that P(A1) = 0.22, P(A2) = 0.25, P(A3) = 0.28, P(A1 ∩ A2) = 0.14, P(A1 ∩ A3) = 0.04, P(A2 ∩ A3) = 0.06, P(A1 ∩ A2 ∩ A3) = 0.01. Express in words each of the following events, and compute the probability of each event. (a) A1 ∪ A2 Express in words the...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project i}, for i = 1, 2, 3, and suppose that P(A1) = 0.22, P(A2) = 0.25, P(A3) = 0.28, P(A1 ∩ A2) = 0.13, P(A1 ∩ A3) = 0.03, P(A2 ∩ A3) = 0.07, P(A1 ∩ A2 ∩ A3) = 0.01. Express in words each of the following events, and compute the probability of each event. a) A1 ∪ A2 Express in words the...
1)Three independent reviewers are reviewing a book. let A1 denote the event that a favorable review...
1)Three independent reviewers are reviewing a book. let A1 denote the event that a favorable review is submitted by reviewer, I = 1, 2, 3. Assume that A1, A2, and A3 are mutually independent and that P(A1) = 0.6, P(A2) =0.57, and P(A3) = 0.4. a) Compute the probability that at least one of the reviewers submit a favorable review. b) Compute the probability that exactly two reviewers submit favorable reviews.
1. Logs purchased from a certain supplier can have three types of defect. The first two...
1. Logs purchased from a certain supplier can have three types of defect. The first two types are length defects and occur with the following probabilities: P (too much trim) = 0.02 P (too little trim) = 0.01 The third type of defect is excessive sweep and occurs with the following probability: • P (excessive sweep) = 0.05 A. What is the probability of a log having a length defect? B. What is the probability of a log not having...
A certain article manufactured in our facilities may present three different types of defects: minor aesthetic,...
A certain article manufactured in our facilities may present three different types of defects: minor aesthetic, major aesthetic and functional. Of the last 430 items manufactured, 46 have a minor cosmetic defect, 18 have a major cosmetic defect and 11 have a functional defect Only 3 of the 430 present the three types of defect, while 67 present at least one of aesthetic defects. 9 articles with major aesthetic defect and functional defect were identified, while there were 4 articles...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT