Question

Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of...

Suppose that X1,..., Xn∼iid N(μ,σ2).

a) Suppose that μ is known. What is the MLE of σ?

(b) Suppose that σ is known. What is the MLE of μ?

(c) Suppose that σ is known, and μ has a prior distribution that is normal with known mean and variance μ0 and σ02. Find the posterior distribution of μ given the data.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3....
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3. Find an initial unbiased estimator T for z(μ). Next, derive the Rao-Blackwellized version of T.
If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where...
If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where σ2 > 0 is unknown and μ0 is known a.determine the MLE of σ2. b. show that the mle of σ2 is asymptotically normal
X1, · · · Xn ~ iid N(µ, σ2 ) (a) Derive a 100(1 − α)%...
X1, · · · Xn ~ iid N(µ, σ2 ) (a) Derive a 100(1 − α)% confidence interval for σ2 when µ is unknown. (b) Derive a α−test for σ2 when H0 : σ2 = σ02  vs H1 : σ2 < σ02  Where σ02 > 0 and µ is unknown.
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in...
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in (0,1), derive a level α LR test for the null hypothesis H0: σ2 = σ02 against H1: σ2/=σ02 in the implementable form. (Hint: When is the function g(u) = ue1-u, u > 0 increasing? When is it decreasing? Is your test one-sided or two-sided?)
Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with...
Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with -∞<μ<∞ and σ2 > 0. a. Develop a likelihood ratio test for H0: μ <= μ0 vs. H1: μ > μ0 b. Develop a likelihood ratio test for H0: μ >= μ0 vs. H1: μ < μ0
4. Suppose that we have X1, · · · Xn iid∼ N(µ, σ2 ) (a) Derive...
4. Suppose that we have X1, · · · Xn iid∼ N(µ, σ2 ) (a) Derive a 100(1 − α)% confidence interval for σ 2 when µ is unknown. (b) Derive a α−test for σ 2 when hypotheses is given as: H0 : σ^2 = σ^2sub0 vs H1 : σ^2 < σ^2sub0 . where σ 2 0 > 0 and µ is unknown. I am particularly struggling with b. Part a I could do.
Suppose that X1,..., Xn∼iid Geometric(p). (a) Suppose that p has a uniform prior distribution on the...
Suppose that X1,..., Xn∼iid Geometric(p). (a) Suppose that p has a uniform prior distribution on the interval [0,1]. What is the posterior distribution of p? For part (b), assume that we obtained a random sample of size 4 with ∑ni=1 xi = 4. (b) What is the posterior mean? Median?
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior...
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find the Bayes estimate under squared error loss. (c) The variance of the data distribution is φ= 3θ2. Find the Bayes estimator (under squared error loss) for φ.Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find...
Question: (Bayesian) Suppose X1,X2,...,,Xn are iid Binomial(3,θ), and the prior distribution of θ is Uniform[0,1]. (a)...
Question: (Bayesian) Suppose X1,X2,...,,Xn are iid Binomial(3,θ), and the prior distribution of θ is Uniform[0,1]. (a) What is the posterior distribution of θ|X1....,Xn? (b) What is the Bayesian estimator of θ for mean square loss?
Let X1, . . . , Xn ∼ iid N(θ, σ^2 ) for σ ^2 known....
Let X1, . . . , Xn ∼ iid N(θ, σ^2 ) for σ ^2 known. Find the UMP size-α test for H0 : θ ≥ θ0 vs H1 : θ < θ0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT