Question

Let ? ̅ and ?2 be the mean and variance of a random sample of size...

Let ? ̅ and ?2 be the mean and variance of a random sample of size 16 from a normal distribution N(4, 128). Find (a) ?(5 < ? ̅ < 8) (b) ?(200 < ?2 < 262.4)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. If ? ̅1 is the mean of a random sample of size n from a...
a. If ? ̅1 is the mean of a random sample of size n from a normal population with mean ? and variance ?1 2 and ? ̅2 is the mean of a random sample of size n from a normal population with mean ? and variance ?2 2, and the two samples are independent, show that ?? ̅1 + (1 − ?)? ̅2 where 0 ≤ ? ≤ 1 is an unbiased estimator of ?. b. Find the value...
Let X1, X2 be a random sample of size 2 from the standard normal distribution N...
Let X1, X2 be a random sample of size 2 from the standard normal distribution N (0, 1). find the distribution of {min(X1, X2)}^2
Let ??, ??, . . . , ?? form a random sample of size ? from...
Let ??, ??, . . . , ?? form a random sample of size ? from some probability distribution with mean ? ? and variance ?.If ? isgreaterthan60, (a) What is the distribution of sample mean? Explain.
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a distribution with variance σ^2. Let S^2 be the sample variance. Show that E(S^2)=σ^2.
Let X1,...,Xn be a random sample from a normal distribution with mean zero and variance σ^2....
Let X1,...,Xn be a random sample from a normal distribution with mean zero and variance σ^2. Construct a 95% lower confidence limit for σ^2. Your anwser may be left in terms of quantiles of some particular distribution.
Let X be the mean of a random sample of size n from a N(θ, σ2)...
Let X be the mean of a random sample of size n from a N(θ, σ2) distribution, −∞ < θ < ∞, σ2 > 0. Assume that σ2 is known. Show that X 2 − σ2 n is an unbiased estimator of θ2 and find its efficiency.
Let x bar be the mean of a random sample of  n = 36 currents (in milliamperes)...
Let x bar be the mean of a random sample of  n = 36 currents (in milliamperes) in a strip of wire in which each measurement has a mean of 16 and a variance of 6. X bar has an approximate normal distribution, find P(12.5 < x bar < 15.6) .
Let X1, X2, X3 be a random sample of size 3 from a distribution that is...
Let X1, X2, X3 be a random sample of size 3 from a distribution that is Normal with mean 9 and variance 4. (a) Determine the probability that the maximum of X1; X2; X3 exceeds 12. (b) Determine the probability that the median of X1; X2; X3 less than 10. (c) Determine the probability that the sample mean of X1; X2; X3 less than 10. (Use R or other software to find the probability.)
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and...
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and the mean is unknown.   Find the minimum variance unbiased estimator of the mean. Justify all your steps.
Let ?1 and ?2 be a random sample of size 2 from a normal distribution ?(?,...
Let ?1 and ?2 be a random sample of size 2 from a normal distribution ?(?, 1). Find the likelihood ratio critical region of size 0.005 for testing the null hypothesis ??: ? = 0 against the composite alternative ?1: ? ≠ 0?