Sol)
Mean = 55
S.D = 1.2
a)
Probability that container will hold between 53.5 and 56.0
Z = ( X - mean ) / S.D
= ( 53.5 - 55 ) / 1.2
= -1.25
Z = ( X - mean ) / S.D
= ( 56 - 55) / 1.2
= 0.83333
P( 53.5 < X < 56 ) = P( -1.25 < Z < 0.83333)
= P( Z < 0.8333333 ) - P( Z < -1.25 )
= 0.7997 - 0.1056
= 0.6921
b)
P( X > n ) = 94%
P( Z > ( X - mean ) / S.D ) = 0.94
( X - 55 ) / 1.2 = -1.554774
From p value to z score calculator
X - 55 = -1.8657288
X = 53.1342712
c)
34 randomly selected containers is greater than 55.4
n = 34
Z = ( X - MEAN ) / ( S.D / ✓ N)
= ( 55.4 - 55 ) / ( 1.2 /✓34)
= 0.4 / 0.20579830
= 1.943650
P( X > 55.4 ) = P( Z > 1.943650)
= 0.0247
Get Answers For Free
Most questions answered within 1 hours.