Question

Assume that z is the test statistic. (a) H0: μ = 22.5, Ha: μ > 22.5;...

Assume that z is the test statistic.

(a) H0: μ = 22.5, Ha: μ > 22.5; x = 25.8, σ = 7.8, n = 29
(i) Calculate the test statistic z. (Round your answer to two decimal places.)


(ii) Calculate the p-value. (Round your answer to four decimal places.)


(b) H0: μ = 200, Ha: μ < 200; x = 191.1, σ = 30, n = 24
(i) Calculate the test statistic z. (Round your answer to two decimal places.)


(ii) Calculate the p-value. (Round your answer to four decimal places.)


(c) H0: μ = 12.4, Ha: μ ≠ 12.4; x = 11.3, σ = 5.5, n = 39
(i) Calculate the test statistic z. (Round your answer to two decimal places.)


(ii) Calculate the p-value. (Round your answer to four decimal places.)

Homework Answers

Answer #1

a. i. Here test statistics

ii. As test is right tailed test so P value is

b. i. Here test statistics is

ii. As it is left tailed test so P value is

c. i. Here test statistics is

ii. As it is two tailed test so P value is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A test of the null hypothesis H0: μ = μ0 gives test statistic z =...
1. A test of the null hypothesis H0: μ = μ0 gives test statistic z = 0.26. (Round your answers to four decimal places. (a) What is the P-value if the alternative is Ha: μ > μ0? (b)What is the P-value if the alternative is Ha: μ < μ0? (c)What is the P-value if the alternative is Ha: μ ≠ μ0? 2. A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.65. (a) What...
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.24....
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.24. (Round your answers to four decimal places.) (a) What is the P-value if the alternative is Ha: μ > μ0? (b) What is the P-value if the alternative is Ha: μ < μ0? (c) What is the P-value if the alternative is Ha: μ ≠ μ0?
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.46....
A test of the null hypothesis H0: μ = μ0 gives test statistic z = −1.46. (Round your answers to four decimal places.) (a) What is the P-value if the alternative is Ha: μ > μ0? (b) What is the P-value if the alternative is Ha: μ < μ0? (c) What is the P-value if the alternative is Ha: μ ≠ μ0?
A test of the null hypothesis H0: μ = μ0  gives test statistic z = −0.13. (Round...
A test of the null hypothesis H0: μ = μ0  gives test statistic z = −0.13. (Round your answers to four decimal places.) (a) What is the P-value if the alternative is Ha: μ > μ0? (b) What is the P-value if the alternative is Ha: μ < μ0? (c) What is the P-value if the alternative is Ha: μ ≠ μ0?
Consider the following hypothesis test. H0: μ ≥ 35 Ha: μ < 35 A sample of...
Consider the following hypothesis test. H0: μ ≥ 35 Ha: μ < 35 A sample of 36 is used. Identify the p-value and state your conclusion for each of the following sample results. Use α = 0.01. A. x = 34 and s = 5.2 Find the value of the test statistic. (Round your answer to three decimal places.) B. Find the p-value. (Round your answer to four decimal places.) C. x = 33 and s = 4.5 Find the...
In a test of H0: μ = 200 against Ha: μ > 200, a sample of...
In a test of H0: μ = 200 against Ha: μ > 200, a sample of n = 120 observations possessed mean = 202 and standard deviation s = 34. Find the p-value for this test. Round your answer to 4 decimal places.
Consider the following hypothesis test. H0: μ ≥ 55 Ha: μ <  55 A sample of 36...
Consider the following hypothesis test. H0: μ ≥ 55 Ha: μ <  55 A sample of 36 is used. Identify the p-value and state your conclusion for each of the following sample results. Use α = 0.01. (a) x = 54 and s = 5.3 Find the value of the test statistic. (Round your answer to three decimal places.) Find the p-value. (Round your answer to four decimal places.) p-value = State your conclusion. Reject H0. There is insufficient evidence to...
Consider the following hypothesis test. H0: μ = 20 Ha: μ ≠ 20 A sample of...
Consider the following hypothesis test. H0: μ = 20 Ha: μ ≠ 20 A sample of 230 items will be taken and the population standard deviation is σ = 10. Use α = 0.05. Compute the probability of making a type II error if the population mean is the following. (Round your answers to four decimal places. If it is not possible to commit a type II error enter NOT POSSIBLE.) (a) μ = 18.0 (b) μ = 22.5 (c)...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of 50 provided a sample mean of 19.3. The population standard deviation is 2. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) Using α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ < 20.Reject H0. There is...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.07. The population standard deviation is 3. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) At α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ ≠ 15.Reject H0. There is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT