Question

a) What are the modal values of a Poisson distribution X ~ P(λ)? b) Y ~...

a) What are the modal values of a Poisson distribution X ~ P(λ)?

b) Y ~ P(λ) is independent from X ~ P(λ) (this is, identically distributed like X). What is the probability distribution of Z = X + Y?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X follow Poisson distribution with λ = a and Y follow Poisson distribution with λ...
Let X follow Poisson distribution with λ = a and Y follow Poisson distribution with λ = b. X and Y are independent. Define a new random variable as Z=X+Y. Find P(Z=k).
Let X and Y be independent random variables following Poisson distributions, each with parameter λ =...
Let X and Y be independent random variables following Poisson distributions, each with parameter λ = 1. Show that the distribution of Z = X + Y is Poisson with parameter λ = 2. using convolution formula
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t)...
Poisson Distribution: p(x, λ)  =   λx  exp(-λ) /x!  ,  x = 0, 1, 2, ….. Find the moment generating function Mx(t) Find E(X) using the moment generating function 2. If X1 , X2 , X3  are independent and have means 4, 9, and 3, and variencesn3, 7, and 5. Given that Y = 2X1  -  3X2  + 4X3. find the mean of Y variance of  Y. 3. A safety engineer claims that 2 in 12 automobile accidents are due to driver fatigue. Using the formula for Binomial Distribution find the...
Suppose X and Y are independent Poisson random variables with respective parameters λ = 1 and...
Suppose X and Y are independent Poisson random variables with respective parameters λ = 1 and λ = 2. Find the conditional distribution of X, given that X + Y = 5. What distribution is this?
Let X be a Poisson random variable with parameter λ and Y an independent Bernoulli random...
Let X be a Poisson random variable with parameter λ and Y an independent Bernoulli random variable with parameter p. Find the probability mass function of X + Y .
For the hierarchical model Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma(α, β), find the marginal...
For the hierarchical model Y |Λ ∼ Poisson(Λ) and Λ ∼ Gamma(α, β), find the marginal distribution, mean, and variance of Y . Show that the marginal distribution of Y is a negative binomial if α is an integer. (b) Show that the three-stage model Y|N∼Binomial(N,p), N|Λ∼Poisson(Λ), andΛ∼Gamma(α,β) leads to the same marginal distribution of Y .
b. If a random variable follows a Poisson distribution with λ = 4 and t =...
b. If a random variable follows a Poisson distribution with λ = 4 and t = 2. Find     (i) The probability of more than 5 successes.    (ii) The probability of at most 2 successes.    (iii) The probability of less than 2 successes.    (iv) The probability of between 2 and 5 successes, P(2 ≤ X ≤ 5). The expected value (E(x)), variance (σ2), and standard deviation of this Poisson distribution. (Show work)
Let X and Y be independent and identically distributed with an exponential distribution with parameter 1,...
Let X and Y be independent and identically distributed with an exponential distribution with parameter 1, Exp(1). (a) Find the p.d.f. of Z = Y/X. (b) Find the p.d.f. of Z = X − Y .
If X, Y, and Z are independent and identically distributed Γ(1,1), derive the joint distribution of...
If X, Y, and Z are independent and identically distributed Γ(1,1), derive the joint distribution of U = X+Y, V = X + Z, and W = Y + Z.
Calculate each Poisson probability: (a) P(X = 9), λ = 0.80 (Round your answer to 7...
Calculate each Poisson probability: (a) P(X = 9), λ = 0.80 (Round your answer to 7 decimal places.) Probability =    (b) P(X = 8), λ = 9.20 (Round your answer to 4 decimal places.) Probability =    (c) P(X = 10), λ = 8.60 (Round your answer to 4 decimal places.) Probability =