Question

50 Observations are randomly selected from a normally distributed population with a population standard deviation of...

50 Observations are randomly selected from a normally distributed population with a population standard deviation of 25 and a sample mean of 175. Find a 95% confidence interval for the mean.

Homework Answers

Answer #1

Solution :

Given that,

Point estimate = sample mean = = 175

Population standard deviation =    = 25

Sample size = n = 50

At 95% confidence level

= 1 - 95%  

= 1 - 0.95 =0.05

/2 = 0.025

Z/2 = Z0.025 = 1.96


Margin of error = E = Z/2 * ( /n)

= 1.96 * (25 /   50)

= 6.93

At 95% confidence interval estimate of the population mean is,

  ± E

175 ±  6.93   

( 168.07 , 181.93 )  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
16 observations are randomly chosen from a normally distributed population, with a known standard deviation of...
16 observations are randomly chosen from a normally distributed population, with a known standard deviation of 16 and a sample mean of 144. What is the upper bound of a 99% confidence Interval? Answer choices: 154.3 153.3 151.8 146.6
A sample of 29 observations selected from a normally distributed population gives a mean of 241...
A sample of 29 observations selected from a normally distributed population gives a mean of 241 and a sample standard deviation of s=13.2. Create a90% confidence interval for µ. Use a T-Interval and round all values to 2 decimal places. The 90% confidence interval runs from  to  .
A sample of 25 observations is selected from a normal population where the population standard deviation...
A sample of 25 observations is selected from a normal population where the population standard deviation is 32. The sample mean is 77.   a. Determine the standard error of the mean. (Round the final answer to 3 decimal places.) The standard error of the mean is . b. Determine the 95% confidence interval for the population mean. (Round the z-value to 2 decimal places. Round the final answers to 3 decimal places.) The 95% confidence interval for the population mean...
A sample of 25 observations is selected from a normal population where the sample standard deviation...
A sample of 25 observations is selected from a normal population where the sample standard deviation is 4.85. The sample mean is 16.80.   a. Determine the standard error of the mean. (Round the final answer to 2 decimal places.) The standard error of the mean is            . b. Determine the 95% confidence interval for the population mean. (Round the t-value to 3 decimal places. Round the final answers to 3 decimal places.) The 95% confidence interval for the population...
A sample of 235 observations is selected from a normal population with a population standard deviation...
A sample of 235 observations is selected from a normal population with a population standard deviation of 25. The sample mean is 20. Determine the standard error of the mean. (Round your answer to 3 decimal places.) Determine the 90% confidence interval for the population mean. (Use z Distribution Table.) (Round your answers to 3 decimal places.)
A sample of 245 observations is selected from a normal population with a population standard deviation...
A sample of 245 observations is selected from a normal population with a population standard deviation of 25. The sample mean is 20. Determine the standard error of the mean. (Round your answer to 3 decimal places.) Determine the 90% confidence interval for the population mean. (Use z Distribution Table.) (Round your answers to 3 decimal places.)
2. From a normal population, a sample of 245 observations is selected. The population standard deviation...
2. From a normal population, a sample of 245 observations is selected. The population standard deviation is 28, and the sample mean is 17. a. Determine the standard error of the mean. (Round your answer to 3 decimal places.) STANDART ERROR OF THE MEAN: …..? b. Determine the 95% confidence interval for the population mean. (In your calculations: round your z/t value to 2 decimals, but round all other values to 3 decimals. Round your final answer to 3 decimal...
A sample of 40 observations is selected from a normal population where the population standard deviation...
A sample of 40 observations is selected from a normal population where the population standard deviation is 25. The sample mean is 75. a. Determine the standard error of the mean. (Round the final answer to 3 decimal places.) The standard error of the mean is  . b. Determine the 90% confidence interval for the population mean. (Round the z-value to 2 decimal places. Round the final answers to 3 decimal places.) The 90% confidence interval for the population mean is...
A sample of 28 observations is selected from a normal population where the sample standard deviation...
A sample of 28 observations is selected from a normal population where the sample standard deviation is 5.00. The sample mean is 16.95.   a. Determine the standard error of the mean. (Round the final answer to 2 decimal places.) The standard error of the mean is. b. Determine the 95% confidence interval for the population mean. (Round the t-value to 3 decimal places. Round the final answers to 3 decimal places.) The 95% confidence interval for the population mean is...
A sample of 250 observations is selected from a normal population with a population standard deviation...
A sample of 250 observations is selected from a normal population with a population standard deviation of 23. The sample mean is 18. Determine the standard error of the mean. (Round your answer to 3 decimal places.) Determine the 99% confidence interval for the population mean. (Use z Distribution Table.) (Round your answers to 3 decimal places.)